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PREFACE

The practical implications of linear sequential filtering (or

Kalman-Bucy filtering) theory were quickly recognized by the engineering

community as an important contribution to real-time data processing. Some

of its numerous successful applications have been made to aerospace en-

gineering system. The typical examples are orbit determination and trajec-

tory estimation problems. Since these problems generally are concerned with

continuous nonlinear dynamic systems and discrete observations, nonlinear

filtering has been a theme of interest in the field of orbit determination.

It has been demonstrated that the optimal nonlinear filter requires

the computation of an infinite number of moments and generally its implementa-

tion is not practical. This leads one to seek an approximate solution to the

optimal nonlinear filtering problem. Several approximate nonlinear filters

have been proposed previously and, for the most part, these can be classified

as one of two basic types of second order filters. The first is the truncated

second order filter which utilizes a Taylor series expansion of the dynamic

system and the state-observation relationships, followed by a truncation of

the third and higher order moments. The other is the Gaussian second order

filter which employs a Taylor series expansion and approximations of the

fourth order moments in terms of the second order moments, under the assump-

tion that the conditional density function is Gaussian. The unique feature

of both filters is found in the fact that a random forcing term occurs in the

covariance equation. The random forcing term which enters into the covariance

equation in a linear manner is considered to have potential for causing the

conditional covariance matrix to be negative definite over some non-zero

time interval. This term is often neglected in the modified Gaussian or
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truncated second order filters.

This study is concerned with the development of an approximate non-

linear filter using the Martingale theory and appropriate smoothing proper-

ties. Both the first order and the second order moments are estimated. The

filter, which is developed, can be classified as a modified Gaussian second

order filter. Its performance is evaluated in a simulated study of the prob-

lem of estimating the state of an interplanetary space vehicle during both a

simulated Jupiter fly-by and a simulated Jupiter orbiter mission. In addi-

tion to the modified Gaussian second order filter, the modified truncated

second order filter is evaluated also in the simulated study. Results ob-

tained with each of these filters are compared with numerical results obtained

with the extended Kalman filter and the performance of each filter is deter-

mined by comparison with the actual estimation errors. The simulations are

designed to determine the effects of the second order terms in the dynamic

state relations, the observation-state relations and in the Kalman gain com-

pensation term. The result of an extensive simulation shows that the Kalman

gain compensated filter which includes only the Kalman gain compensation term

is superior to all of the other filters.
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LIST OF SYMBOLS

The following list tabulates all of the significant symbols used in

this study and each symbol is accompanied by a brief description.

n the number of state variables

m the number of different types of observations

t indicates a particular instant of time at which a discrete obser-

vation is made

Xt state variable at time t

xt~s state variable at time t+s
xts

yi observation at time t = i

Yt available observations at time t , that is, Yt {yi : 0 < i < t}
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f(x,t) state dynamic equation, nxl vector

f partial derivatives of f(.) w.r.t.x , nxn matrixx

h(x) state-observation relationship, mxl vector

h partial derivatives of h(-)w.r.t.x , mxn matrixx
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f.i i- component of f(.)
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LIST. OF DEFINITIONS

The following definitions are used consistantly throughout this

study.

E [Yt+s/Yt]

E [x t/Yt]

[Xt+s/ t]

Xt - xt/t

xt+s - Rt+s/t

T
xt/txt/t

= xT
Xt+s/tXt+s/t

E[V
t
/Y

t
]

= E[V t+s /Y t]

E[Pt+s/Yt]

predicted observation on the basis of Yt

posterior estimate of x
t

on the basis of Yt '

which is the optimal estimate of x
t

at time t

apriori estimate of xt+
s

on the basis of Yt

which is also the optimal estimate at t+s , pro-

vided that no other observation is made after t

posterior estimation error

apriori estimation error, if s = 0 apriori es-

timation error becomes posterior estimation error

xt/t

nxn matrix of posterior estimation error square,

each element in this matrix is a random variable

nxn matrix of apriori estimation error squares, each

element of this matrix is a random variable

posterior conditional covariance matrix

apriori

squares

apriori

Vt+s/t

estimate of posterior estimation error

Vt+s on the basis of Yt ' nxn matrix

conditional covariance matrix, P
t+s/t

= Vt/t if s = 0t/t

x

Yt+s/t

xt/t

t+s/t

xt/t

Xt+s/t

Vt

t+s

Vt/t

Vt+s/t
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CHAPTER 1

INTRODUCTION

1.1 Preliminary Remarks

In the field of Space tracking and guidance, one basic requirement

for spacecraft guidance is the capability to obtain and to rapidly process

observations to determine an estimate of the spacecraft trajectory. This re-

quirement initiates the search for mathematical techniques which are compu-

tationally efficient, but which possess a high degree of accuracy. Follow-

ing the precise formulations of the linear sequential estimation theory by

Kalman and Bucy (6,7), the practical implications of the theory were recog-

nized and numerous successful applications have been made in the field of

orbit determination and trajectory estimation problems. However, these ap-

plications generally are concerned with nonlinear continuous dynamic systems

and nonlinear state-observation relationships and, hence, the linear esti-

mation theory cannot be applied directly. As a matter of fact, it is not a

simple task to apply the linear estimation theory to orbit determination

problems. Usually nonlinear dynamic systems and state-observation relation-

ships are linearized about a nominal (or reference) trajectory under the as-

sumption that the true trajectory is sufficiently close to the reference tra-

jectory, and then the linear estimation theory is applied to the linearized

systems. Conceptually, there are two ways to carry out the linearizations

and the resulting filters are somewhat different from each other. The dis-

tinction is how the nominal trajectory is chosen. If a prescribed trajectory

is chosen as a nominal trajectory, the original Kalman-Bucy linear filter

can be directly applied to the linearized system which governs the state and

the observation deviations from the prescribed nominal values of the state

1



2

and observation. Although this approach appears to be conceptually simple,

it suffers from several points. First, if the nominal trajectory is not

close enough to the true trajectory, the basic assumption used in the lin-

earization procedure is violated and the estimate of the deviation from the

nominal trajectory filter can lead to inaccurate results and often diverges.

Furthermore, it is intuitively more appealing to take the current estimate,

rather than a prescribed trajectory, as a nominal trajectory and conduct

the linearization about the current estimate instead of a prescribed trajec-

tory. In this case, the linearized system will involve deviation in the

state and the observation from the current estimates of the state and obser-

vation instead of values related to a prescribed nominal. The original

Kalman-Bucy linear filter can be applied to the above linearized system. The

advantages of using the current estimate as a nominal trajectory are that a

nominal which is closer to the true trajectory can be used and that the fil-

tering procedures can be simplified due to the fact that all the propagated

state deviations will become identically zero. This concept will be clearly

discussed in Section 1.3. In order to represent this situation, "the extend-

ed Kalman (EK) filter" proposed by Jazwinski (2) and distinguished from the

prescribed nominal trajectory filter will be used.

It is well known that all of the information about the state pro-

vided by the measurements is contained in the probability density function

of the state conditioned upon the entire past history of measurements. From

this conditional probability density function, one can, in principle, deter-

mine the optimal filter. In general, the optimal filter is expressed in

terms of the moments of the conditional probability density function. Hence,
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this conditional density function becomes a prime ingredient for studies of

optimal filtering.

Several authors have considered the problem of deriving a dynami-

cal equation for the conditional density function when the dynamic state

noise and observation noise are both jointly Gaussian and white. The most

recent pattern of research in this field appears to have been initiated by

Stratononich (12) and Kushner (8,9). The formal character of this initial

work stimulated numerous studies of nonlinear filtering which have attempted

to extend, and to obtain a more rigorous verification of these initial re-

sults. The method used by Stratononich and Kushner is based on a discrete

time model, and an iterative application of Bayes' rule is used to obtain a

representation of the conditional density function. The solution of the

continuous time problem is obtained by a limiting process.

Although the central ideas and methods were all supplied by

Stratonovich and Kushner, and most other papers in this area are just con-

cerned with extention of these basic ideas, Bucy's (4,5) approach to the op-

timal nonlinear filtering problem is rather unique and more mathematical than

Stratonovich and Kushner's. However, the results which he obtained for the

Gaussian state and observation noise case were identical to those of Kushner.

An important intermediate result of Bucy's work is that of a representation

theorem which demonstrates how the posterior conditional density function at

some instant of time can be represented as a function of the apriori density,

P(X(to)) and the conditional expectation of an exponential function of the

observational data over the time interval (to,t)

In addition to the above ab ove research, Mortenson (14), Cox (25) and

Detchmendy et al. (21) approach the nonlinear filtering problem from the
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control theoretical point of view. They formed a likely hood function and

maximized the function in various ways, e.g., dynamic programming or

Pontryagin's maximum principle.

Fisher (23) presented a unified and compact development of the non-

linear filtering problem for a broad class of Markov signal processes, by

making use of the characteristic function technique. The idea of approaching

the continuous time nonlinear estimation problem from the innovation process

approach was suggested by Frost (33).

There have been a number of associated approximation methods de-

veloped. Noteable among those are those-of Bucy (4,5), Kushner (10),

Jazwinski (1,2,3), Bass et al. (18,20), Schwartz (19) and Athans et al. (27).

Most of the references cited above utilize techniques that are closely re-

lated to the methods introduced by Kushner (10) and Bucy (4), namely, Taylor

series expansion and the assumption of a Gaussian density function or Taylor

series expansion and truncation. Utilizing the Taylor series expansion tech-

nique, there are two basic types of second order filters which have been de-

veloped. First, it is assumed that the third and higher order moments are

negligible. The resulting filter, referred to as the truncated second order

filter, was developed by Jazwinski (1,2,3) and independently by Bass, Norum

and Schwartz (20) who extended the idea of Bucy (4) to the arbitrary n-dimen-

sional case. Schwartz (19), Jazwinski (3) and Fisher (24) independently de-

veloped the Gaussian second order filter. In this approximation, the fourth

order moments are approximated in terms of the second order moments under the

assumption that the conditional density function is Gaussian.

A significant feature of both the truncated and the Gaussian second

order filters is the presence of a random forcing term in the covariance
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equation. The presence of the random forcing term is, in principle, justi-

fiable. However, there has been considerable controversy associated with

the presence of this term.

The term enters with a plus sign in one filter and with a minus

sign in the other. Furthermore, the term enters in linear manner and there

is a possibility that a negative variance may result due to the sign of the

observation residual. These considerations suggest considering a compromise

between the truncated and the Gaussian second order filters. Jazwinski (3)

dropped the forcing term in the covariance equation for the compromise and

defined the modified truncated second order (MTSO) filter and the modified

Gaussian second order (MGSO) filter, respectively.

Athans, et al. (27) developed the modified Gaussian second order

filter using an assumption based on an intuition argument and applied the

filter to a simple one-dimensional free-fall reentry problem with range type

of measurement. The result of the simulations indicates considerable promise

for the MGSO filter.

In this report, the modified Gaussian second order filter was

developed rigorously on the basis of the Martingale theory and smoothing pro-

perties of Loeve (34). The resulting algorithm was applied to a study of

the Jupiter fly-by and the Jupiter orbiter missions using range, range-rate,

star-planet and sun-planet angle measurements.

1.2 Kalman-Bucy Filter

Consider the linear dynamics system described by the linear vector

stochastic differential equation

dxt = F(t)xtdt+ G(t)dt , t > to (1.1)
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Iq1. (1.1) can be expressed formally as (see Ref. 15)

dx
d t = F(t)xt + G(t)ut t > t (1.2)

where x
t

is the nxl state vector, F(-) and G(-) are, respectively,

nxn and nxr non-random, continuous matrix functions of time, and {Bt,t > t }

is an r-vector Brownian motion process with the statistics

E[dBtdBt] = Q(t)dt

The r-vector u
t

is a white Gaussian vector process which can be regarded

as the time derivitives of at

It is assumed that linear observations are taken at discrete time

instants, k

Yk = H(k)xk + vk ; k = 1,2,... (1.3)

where Yk is an m-vector of observations, H(-) is an mxn non-random,

bounded matrix function, and {vk,k = 1,2,...} is an m-vector, indepen-

dent Gaussian sequence, i.e., vk X N(O,Rk),Rk > 0 for all k . The dis-

tribution of x is Gaussian, i.e., x X N(Ro,P ) , and x {St} and
0 0 0 X 0O t'

{vk} are assumed to be independent.

The fact that the minimum variance estimate is given by the condi-

tional expectation (see Appendix F), leads to the requirement that the con-

ditional expectation 9t/t = E[xt/Yt] for the above system be found. The

solution to this problem yields differential equations of evolution for the

conditional expectation Rt+s/t and the covariance matrix Pt+s/t Between

observations, these relations satisfy the differential equations given in

Eqs. (1.4) and (1.5), respectively.
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ds F(t+s /t x(t) = iRt/t (1.4)

dP
t+ds/t = F(t+s) + P /tF (t+s) + G(t+s)Q(t+s)G T(t+s) , P(t) = V (1.5)
ds t+s/t t+s /t

where the superscript T indicates the transpose of matrix, t represents

the time at which the last observation was made, and s represents any time

segment after t and before a new observation is made. At the instant t+s

namely, immediately after a new observation is incorporated at t+s , the

following difference equations are satisfied.

xt+s/t+s t+s/t Kt+s(Yt+s Yt+s/t)

V = P -K H(ti s)P (1.7)t+s/t+s t+s/t Kt+sH(t + s)t+/t (1.7)

= H(t + s)Rt+s/t (1.8)Yt+s/t t+S/t

K = /tHT(t + s)[H(t + s)Pt+s/ HT(t + s) + Rt+] (1.9)
t+s tis/t tis/t t+s

where Yt+s/t is the predicted observation on the basis of Yt and Kt+s

is the Kalman gain.

The solution of Eqs. (1.4) and (1.5) are referred to as the apriori

estimate and the apriori covariance matrix, respectively. Meanwhile, the

solutions of the difference Eqs. (1.6) and (1.7) are said to be the posterior

estimate and the posterior covariance matrix, respectively. Once the pos-

terior estimate Rt+s/t+s and the posterior covariance matrix Vt+s/t+
s

are obtained, they can be used as initial conditions for the differential

Eqs. (1.4) and (1.5), respectively. By integrating these relations forward

until a new observation is obtained, the apriori estimate which is the op-

timal estimate between observations is obtained. In order to initiate this
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procedure, it is necessary to specify Ro/ and V /. From the statistics

of a random variable x , x and V are given as x and P , res-
o o/o o/o o o

pectively.

1.3 Linearization and the Extended Kalman Filter.

As pointed out previously, the linearization of the dynamic system

and the state-observation relationships cannot be avoided, if the original

Kalman-Bucy filter is applied to the orbit determination problem. The de-

tails presented in the subsequent discussion are used to obtain the extended

Kalman filter.

Suppose that the equation of motion is described by the following

nonlinear stochastic differential equation

dXT = f(XT ,T-)dT + G(T)dB , T > T (1.10)

Eq. (1.10) can be expressed formally as

dX
T = f(X ,T) + G(Tr)u (1.11)

dt T T

The discrete nonlinear observations, which are taken at time instants k

can be expressed as

Yk = h(Xk) + vk , k = 1,2,3,... (1.12)

In the above systems, B ,uT ,vk and xo are assumed to have the properties

described in Section 1.2. The a-field generated by the observations Yk is

denoted by Z
t

, that is Zt Y;O < k < t . Substituting X = X + x
-k T T T

and expanding f(X ,T) in Eq. (1.10) about the nominal X* at each point
T

in time leads to
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dX* + dx = f(X* + x ,T)dT + G(T)dB
T T T T T

(1.13)
f(X*,T)dT + fx(X*,T)X dT + G(T)dB

T

where terms involving powers of x higher than the first one are neglected.

For the nominal, the following equation must be satisfied

dX* =f(X,T)dT

or

dx*

T f(X*,T) (1.14)

Hence, the state deviation x
T

can be described by the linear time varying

stochastic differential equation.

dxt = fx(X*,t)xtdt + G(t)d t (1.15)

The same procedure can be applied to the state-observation relationships

(1.12), and the final result would-be expressed as follows

Y* = h(X*) (1.16)

for the nominal and

Yk = hx(X*)xk + Vk (1.17)

for the observation deviation. Here hx is the first partial derivative

of h(-) w.r.t.X .

Combining Eqs. (1.15) and (1.17) leads to the same model which was

discussed in the previous Section. Therefore, the Kalman-Bucy linear filter-

ing theory can be applied to the system of Eqs. (1.15) and (1.17). Hence,

the optimal estimate of state deviation between observations is given by the
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solution of the following linear differential equation

st = f (X ,t+s/ t (1.18)
~ds x t+Xs t+s/t

At the observation time t + s

Xt+s/t+s = Xt+s/t 
+
Kt+(Yt+ - t+s/t (1.19)

where

y h (X* (1.20)
Yt+/t = Xt+s t+s/t (1.20)

Let T = t + s ; then dT = ds and substituting these in Eq. (1.14) will

yield

dx*
tis _ f(Xt+s ,t + s) (1.21)
ds t+s

Combining Eqs. (1.18) and (1.21), the following result is obtained

d(Xt+s* ,t+s/t =s) f (X* ,t + s + (1.22)
ds t-s X t+s tts/t

Denoting Xt+ X + R , which is an apriori estimate of Xt+s/t tis tisit tis

based on Z
t

, Eq. (1.22) can be approximated as

dXt+s/t
ds = f(X ,t + s) (1.23)

From Eqs. (1.21) and (1.23), it follows that the same differential equation

governs the nominal trajectory Xs* as well as the apriori estimate t+s t+s/t

Therefore, selecting the same initial conditions for Eqs. (1.21) and (1.23)

will lead to the conclusion that the nominal trajectory and the apriori es-

timate are identical. This situation is satisfied if the current optimal

estimate is chosen as a nominal trajectory. In other words, if the nominal

trajectory is updated with a current optimal estimate, the apriori estimate
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Rt+s/t of state xt+s , governed by Eq. (1.18) becomes identically zero,

and hence, Eqs. (1.18) and (1.20) are not necessary. For this situation,

the initial condition for Eq. (1.18) would be zero and, consequently, the

solution becomes identically zero.

From the induction above, it follows that it would be simpler to

linearize the system about the current optimal estimate instead of a certain

prescribed nominal trajectory. This situation usually occurs in nature.

For example, when one deals with the motion of a rigid body, it is always

better to stick with the mass center, which is the analogy of the optimal

estimate of position, that is, the mass center is nothing but a conditional

expectation of equivalent point mass. Furthermore, it has been demonstrated,

in the numerical simulations (30,43), that taking the current optimal estimate

as the nominal trajectory leads to better convergence characteristics than

using a certain prescribed nominal.

At observation time t + s , the optimal estimate Xt+ /t+ of

X would be expressed as follows
t+s

= X* + ^ (1.24)
t+s/t+s t+s t+s/t+s

If the optimal estimate is chosen as a nominal trajectory, then

X*+s = X /t Therefore, Eq. (1.24) becomes

X R + K (y (1.25)t+s/t+s t+s/t 
+

t+s/t t+s(Yt+s - Yt+s/t

Since /t and 9t+s/t are both zero for the case where the optimal es-

timate is chosen as a nominal, Eq. (1.25) again becomes

X= X + K (y + Y* - Y* )t+s/t+s t+s/t t+s t+s t+s t+s (1.26)
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after adding and subtracting Y* It can be easily seen from Eq. (1.16)
t+s

that

Y* = h(X+s = h(Xt+s/t (1.27)
t+s tis t+s/t t+s/t

and

y = y + Y* (1.28)
t+s t+s t+s

Therefore, Eq. (1.26) finally becomes

X X + K (Y -)(1.29)
t+s/t+s t+s/t t+ss t+s t+s/t

The above expression represents the extended Kalman filter (3) and can be

summarized as follows; between observations, the apriori estimate Xt+s/t

and the apriori conditional covariance matrix Pt+s/t which is distinguished

from the apriori covariance matrix for the linear system, must satisfy the

following ordinary differential equations

ds

tis/t = f(X ,t + s) (1.30)
ds t+s/t

and

dPt+s/t T
s7 f x(Rt+s/tSt+s)P#t+s/t 

+
Pt+s/tf(t+s/tt+s) + G(t+s)Q(t+s)GT(t+s) (1.31)ds -tst tstx t+s/t

respectively. At the observation time t + s , the posterior estimate

Xt+s/t+s and the posterior conditional covariance matrix Vt+ /t+ are

determined by the following set of difference equations.

X X i+ K (Y -Y ) (1.32)Xt+s/t+s t+s/t t+s t+s t+s/t

t+s/t+s t+s/t t+s x(X t+s/t)P t+s/t (1.33)
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- h(Xt (1.34)
t+s/t (t+s/t

Kt h (X .)[h )p h + Rt~l]-l (1.35)

Kt t+s/t x(X+s/t)[h t+s t Pt+s/th x(t+s/t) h1(Xt+ s

or

K h (X )R1 (1.36)
t+s = Vt+s/t+s x t+s/t t+s

Finally, Eqs. (1.30) through (1.35) feature the extended Kalman

filter and they can readily be reduced to the Kalman-Bucy filter when the

systems are linear. Unlike the linear system, the covariance matrices cannot

be precomputed. And, as a matter of fact, they are coupled with the optimal

estimate through coefficients fx and, hence, they are not ordinary covar-

iance matrices, but rather they represent conditional covariance matrices.

1.4 The Problem to be Studied

The problem treated in the subsequent study is that of estimating

the state of a continuous nonlinear dynamical system (1.10), influenced by

Brownian motion, using discrete nonlinear observations (1.12) corrupted by

an independent Gaussian noise sequence. In the previous section, the nonlin-

ear system is linearized and the Kalman-Bucy linear filter theory is applied

to the problem of estimating the state of the linearized system. This tech-

nique is based on the assumption that the state deviation is small so that

the second or higher order terms in the Taylor series expansions can be neg-

lected while retaining the first order terms. Suppose that the system is

highly nonlinear or that the initial uncertainty is relatively large so that

the square of the state deviation as well as the deviation itself is not

negligible. In this situation, the Kalman-Bucy linear filtering theory must

be abandoned and an effort must be made to develop a new theory which hopefully
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applies to both linear and nonlinear systems.

Up to the present time, no sign of an exact solution to the nonlin-

ear estimation problem is seen, unless one calculates an infinite number of

moments. Therefore, some sort of an approximate solution is inevitable. With

the possible exception of a scalar system, it is not practically feasible to

include terms of higher order than the second order and, hence, it is desir-

able that the nonlinear estimation technique be defined by using only the

first two moments, namely, the conditional mean and the conditional covari-

ance. In order to do so, the second order terms are included in Taylor series

expansion and a minimum variance criteria is employed to find the conditional

expectation. By definition, the conditional covariance matrix is nothing more

than a conditional mean of the square of the actual estimation errors and,

furthermore, it is clearly understood that the square of the actual estimation

errors is a random variable. Therefore, it is meaningful to interpret the

conditional covariance matrix as the optimal estimate of the square of the

actual estimation error and to approximate it by the same technique as the

conditional mean is approximated. It is necessary to define a meaningful

criteria for approximating the covariance matrix and this is accomplished by

the use of the property of the trace of the matrix. This property is discussed

in Appendix E.

The nonlinear estimation theory developed in this study is applied

to an orbit determination problem. The actual model employed involves the

investigation of the states of an interplanetary space vehicle during the

planetary fly-by and planetary orbiter phases of the mission. In the simu-

lated study, Jupiter is chosen as the main body with the Sun as the perturb-

ing body.
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1.5 Outline of Study

In Chapter 2, the nonlinear mathematical model which will be studied

is discussed briefly. On the basis of a Martingale property which is presented

in Appendix D, an approximate nonlinear estimation algorithm is developed.

In the process of developing the algorithm, basic smoothing properties des-

cribed in Appendix B are extensively used to manipulate the lengthy algebraic

relations and to simplify the resulting expressions. First, a sequential non-

linear estimate is obtained and a formal limiting process is used to obtain a

continuous nonlinear estimation algorithm. In the limiting process, the con-

cept of white noise as a time derivative of Brownian motion is essential. The

Brownian motion is treated separately in Appendix C.

Chapter 3 is concerned with the physical problem to be studied using

the nonlinear estimation algorithm developed in Chapter 2. The problem is

that of estimating the state of an interplanetary space vehicle during the

planetary fly-by and planetary orbiter phase of a Jupiter mission. The equa-

tions of motion for the spacecraft are discussed briefly and expressed as a

set of nonlinear state dynamic equations. Four kinds of observations are con-

sidered. They are range, range-rate, and sun-planet and star-planet angles

as measured from the spacecraft. Finally, computer programs for the nonlin-

ear and the extended Kalman filter equations are described.

In Chapter 4, the results of the numerical simulations are discussed.

Several nonlinear estimation algorithms are obtained from the modified Gaus-

sian second order filter which is developed in Chapter 2, and the modified

truncated second order filter, by neglecting the second order terms in var-

ious combinations. Each nonlinear filter in conjunction with the extended

Kalman filter is simulated with the problem discussed in Chapter 3 to
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determine the effects of the second order terms, i.e., the dynamic second

order term, the observation second order term, and the Kalman gain compensa-

tion term. The Kalman gain compensated filter obtained from the modified

Gaussian second order filter by neglecting the dynamic and the observation

second order terms while retaining the Kalman gain compensation term is shown

to be the best filter on the basis of the simulations. The Kalman gain com-

pensated filter is further examined through numerous simulations.

A summary of results and a list of possible extensions to this work

are presented in Chapter 5.



CHAPTER 2

A NONLINEAR ESTIMATION ALGORITHM

2.1 Introduction

The state of the dynamic system is assumed to evolve as the solu-

tion of a nonlinear stochastic differential equation,

dx
t

= f(xt,t)dt + d t , t > to (2.1)

which is expressed formally as

dx t

dt f(xt't) + ut , t > to (2.2)

In the above expression, f(xt,t) is a n-vector and {u
t
,t > t } is an n-

vector, zero-mean, white Gaussian noise process with

E[utu] = Qt 6(t - T) (2.3)

where Qt is an nxn positive definite matrix for any t . Suppose that ob-

servations on the state are taken at discrete instants of time and s mea-

sures the time interval between a certain point in time, say t + s , and t

at which the last observation was made. Therefore, s will vary from zero

to the maximum time span between two consecutive observations. This approach

is necessary when observations are not taken regularly.

Let the observations of the statebe of the form

Yi = h(xi) + vi , i = 1,2,. (2.4)

where yi and h are m-vectors, and where {vi,i = 1,2,...} is an m-vec-

tor, zero-mean, Gaussian noise sequence with

.17
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E[VkVi] = Rk6kT (2.5)

The covariance matrix Rk is an mxm positive definite matrix for any k .

It is assumed that {ut,t > t } and {vk } are statistically independent.

An extension to the continuous observation case can be made by simply replac-

ing vi with a white Gaussian noise v . In this case the function Rk

will have an infinite magnitude. Since white noise is formally modeled as

the time derivative of Brownian motion B
t

(see Appendix C), it is natural

to relate v. with a white noise vt as follows

S. - .i+s i
v. = (2.6)~~1 s

lim Bt+s t des
Vt = im Sts - (2.7)

" s-·o s ds
s=t

With these definitions, Rk would be of the form

R
= s (2.8)

which approaches Rt6(s) as s goes zero. Denoting
t.

Yt = {Yi'i =1,2,...t} (2.9)

for the ao-field generated by Yi,i = 1,2,...t , the problem of concern is

that of estimating the state x
t

of the dynamical system (2.2) on the basis

of Yt . In particular, the desired estimate is the minimum variance esti-

mate and the solution is well known to be the conditional expectation

EIxt/Yt] C5). The details are discussed in Appendix F.

When both the dynamical system and the observations are linear, the

exact solution yields the Kalman-Bucy linear filter. However, an exact solu-

tion does not seem to be realizable with a finite set of moments when the
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models are nonlinear. Therefore, an approximate solution is inevitable. It

is common practice to linearize the system dynamics f(.) and the observa-

tion-state relationships h(-) , about a specified reference trajectory and

then to apply the Kalman-Bucy filtering theory to the linearized system. In

this chapter, an approximate nonlinear filter, which is a modified Gaussian

second order filter, is derived by utilizing Martingale properties (Appendix

D) and a Taylor series expansion of f(.) and h(-) about the current op-

timal estimate, retaining the second order terms in each expansion.

Regarding the square of the actual estimation errors as a collec-

tion of random variables, the conditional covariance is obtained by minimiz-

ing the following risk function (see Appendix E)

R(Vt+s/t+s (Vt+s - Vt+s/t+s)(Vt+s - Vt+s/t+s (2.10)

where Vt+s is an nxn matrix and the square of the actual estimation errors

and Vt+s/t+s is the optimal estimate of Vt+s given Yt+S , which is the

conditional expectation of V given Y
t+s t+s

2.2 Apriori Estimate xt+s/t

Integrating the state dynamic equation (2.2) from t to t + s ,

the state at t + s can be formally expressed as follows

t+s t+s

xt+
s

= xt + f(x ,T)dT +ft uTdT (2.11)

t+s

t/t (t t/t f Tt uT

t+s

+ {f(T/T T) + f (X/t T))(X - T/t) + fxx( /t) P }dT (2.12)
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The approximate expression (2.12) is obtained by utilizing a Taylor series

expansion of f(.) and truncating at the second order terms. In this expres-

sion t is merely a parameter and s is a variable. For the convenience

of notation, T in f(.) , f (.) and f (-) is neglected unless other-

wise stated. Knowing that u ,T > t is independent of Yt ,and (xt - )t/t

and (x
T

- Z T/t) have zero conditional means, the conditional expectation

Xt+s/t which is the desired apriori estimate of xt+s , is obtained after

taking the conditional expectation of both sides of Eq. (2.12).

t+s

Rt+s/t i -t/ t t /t xxT/t /t (2.13)

Note that f(RTt ) f(R/t) and f (RT/t) are Yt-measurable and the

smoothing property 3 (Appendix B) can be applied. The differential equation

for Xt+s/t , as a function of s , is readily obtained by differentiating

Eq. (2.13) with respect to s . Since the upper limit of integration is a

function of s , Leibnitz's rule is applied and the result is

dt+s/t 1
s)+-f (2.14)ds t+s/t 2 xx t+s/t t+s/t

The above differential equation is different from that of the extended Kalman

filter through the inclusion of the dynamic second order term f (') : P/2
xx

and must be integrated in conjunction with Pt+s/t , from t to the instant

of a new observation, using Rt/t as the initial condition.

2.3 Apriori Conditional Covariance Matrix

Subtracting out Eq. (2.13) from Eq. (2.12), the apriori estimation

errors xt+s/t at t + s , is obtained as follows



21

tt+s/t Xt+s t+s/t

t+s

= (x x )+ u f udT (2.15)

t+s

i-f ( )(x f
'
f( ) (P -P/t

)
}d

t {x T/t T T/t 2 xx T/t T T/t

Differentiation of Eq. (2.15) with respect to s yields the following dif-

ferential equation for apriori estimation error Rt+s/t

dR
t+s/t 1

f (:R - 1 f ( (P - P ) + u (2.16)ds x( t+s/t)s/t /t+ 2 xx t+s/t t+s t+s/t t+s

By definition

~T
Pt+s = Xt+s/t Xt+s/t (2.17)

and differentiating Eq. (2.17) with respect to s , the following relation

is obtained

dP dx- dRT
dPt+s t+s/t ts/t
ds ds t+s/t s/t ds (2.18)

Substitution of Eq. (2.16) into Eq. (2.18) yields

dP
ti-s f (9 )P +:-t-4 {f (R ):(P -P )ut u

ds x (Xt+s/t t+s 2 xx t+s/t t+s- t+s/t t+s/t 
+

t+sXt+s/t

+ T~ 1,1 T(2.19)
i- P f+x )-- {f (k )IP -P )I i-k T

t+s x t+s/t) 2 t+s/tt xx( t+s/t):(P t+s t+s/t t+s/tUt+s

Since t is merely a fixed parameter, the conditional expectation given Yt

and time derivative can be interchanged. Therefore, the following expression

is obtained after taking the conditional expectation of both sides of Eq.

(2.19) and interchanging the conditional expectation and the time derivative.
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ds/t fX(t+s/t)t+s/t + E[Uts+ /
ds x t+s/t tt+s/t t+s t+s/t/t

(2.20)

Pt+s/t x(Rt+s/t) + E[xt+s/tts/Yt]ti-sit ti-st

In the above, the symmetry of the probability density function is assumed and,

hence, the third order moment is taken to be zero. The remaining terms

T
E[Ut+sxt+s/t/Yt] can be computed as follows

t+s

E[Ut+s t+s/t/Yt]

T
[Ut+s t+s/t/Y t]

The factor I comes
2

same token

E[Ut+s5
,t/t t] + t

E [U ut+sU /Yt dT
ti-S T t

(2.21)
t+s

1 T

It E[t+S Xf /t T/t xx r/t T- T/t 

1 Q. (2.22)
2 tt+s

from the property of the delta function (6). By the

T 1
E[Xt+s/tut+s/Yt] 2 Qt+s

and, hence, Eq. (2.20) becomes

dPt+s/t
ds x( t+s/t) t+s/t

which is the desired matrix differential

covariance matrix P . The initial
coditional covariance ma+s/t 

conditional covariance matrix Vt/t

t+s/tfx( t+s/t) + Qt+s
(2.23)

equation for the apriori conditional

condition is given as a posterior

2.4 Predicted Observation Yt+s/t

It is apparent from Eq. (2.4) that the actual observation at t + s

would be
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- h(xi )+ iv (2.24 )
t+s (t+s t+s

Expanding h(-) in Taylor series about the apriori estimate xt+s/t and

neglecting the third or higher order terms, the following approximate expres-

sion for t+s is obtained

y = h(9 )+ h (k )k 1 'h ( ) P ± v (2.25)
t+s t+s/t x t+s/thxt+s/t 2 x t+ s + t +s ts t+s

After taking the conditional expectation of both sides of Eq. (2.25) given

Yt ' the predicted observation Yt+s/t is obtained.

y MR + - h (R (2.26)
Yt+s/ t = h(t+/t) + xxt+/t t+s/t

The above relation is different from that of the extended Kalman filter through

the second order term in the observation-state relation, i.e., h (-) : P/2

The expected errors between actual and predicted observations are

obtained by the difference in Eq. (2.25) and (2.26). Hence, the apriori ob-

servation error (or residual) is given by

h ̂  )i h(( - P ) i v (2.27)Yt+s Yt+sit x t+s/t tit+s/t hx(xx t+/t : (Pt+s - /t + Vt+s (2.27)

2.5 Posterior Estimate and the Optimal Gain Kt+

According to the Theorem 2 of Appendix D, the following sequence

Xt+s/it+s/2'" it+s/t/1 t+s/2" ' ' (2.28)

constitute a Martingale and if Zl,z2,z 3
,... are defined as

Z1l = t+s/l'z2 = Xt+s/2 - Xt+s/l' 3 = Xt+s/3 - t+s/2"''

(2.29)

zt t+s/t -t+ss/t-1'' 'Zt+s = t+s/t+s - t+/tti-s/ts ti-s/t'

then zn's satisfy the following conditions
n
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E[ znl] < , E[Zn+l/zz2,... Zn] = 0 , n > 0 (2.30)

with probability 1. Further, the terms Rt+ , n = 1,2,... of the se-

quence (2.28) are partial sums of the series X z . In other words, if
n

Zt+
s

is so determined that the conditions (2.30) are satisfied, the term

xt+s/t+s of the sequence (2.28), which is the posterior estimate, is uniquely

t+s
determined as a partial sum E z

n
Since zt+s must be a function of ob-

n=l

servation Yt+ , the following linear approximation

zt+s = +st+s t+ s (2.31)

is assumed. Where K t+s and bt+
s

are random variables which are measur-

able over the a-field generated by the observations Yt The bias term

bt+s is given as

bt+s t+s t+s/t

from the condition (2.30) which must hold for the z 's From the series
n

(2.29) and Eq. (2.31), the posterior estimate t+ is expressed, there-

fore, as follows

xt+s/t+s = Rt+s/t + Kt+s (Yt+s - t+s/t (2.32)

In Eq. (2.32), the nxm matrix Kt+
s

can be chosen from a family of Y t-mea-

surable functions so that the minimum variance or equivalently the minimum

of the trace of E[V t+] is achieved. By definition,ti-s
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trE[V I trE(x - R )(x -_ )Tt+s tE[(Xt+s t+s/t+s t+s t+s/t+s ]

[{Xt+s t+s/t t+s(Yt+s -t+s /t (2.33)

{xt+s t+s/t t+s t+s -t+s/t t+(Yt+ t+s/t)}

and the optimality condition (Appendix F) for the minimum of the above rela-

tion requires that

E[(x t+
s

-t+s/t) t+s(Yt+s Yt+s/t}- t+s/t/Yt
] = 0 (2.34)

Substituting Eq. (2.27) into Eq. (2.34) and using the smoothing property 3 of

Appendix B, the following relation is obtained.

E[(x -x )th (R )(x -x ) - (fh ):(P )+v t/Y] t+s t+s/t x t+s/t t+s t+s/t 2 xx (Xt+s/t t+s t+s/t t+s t/

K ,E[{h (x )(t+s X t + -s/th (ts ):(P -P )+v (2.35)
t-s x ti-s/t ti-s ts/t 2 xx t+s/t t+s t+s/t t+s

^ {h ^)Ih (P )(P )+v }T/y]{hx(Xt+s/t)(t+s -t+s/t) + 2 xx t+s/t) : t+s t+s/t t+ss t

If the estimation errors are assumed to be jointly Gaussian, and if it is

assumed further that

E[{h ( ):P }{h (R )P I T/Y Ixx t+s/t t+s xx t+s/t ts t/Y
(2.36)

3{h ( ) }{h (z Txx t+s/t t+s/t xx t+s/t t+s/t

then, the optimal gain Kt+
s

is given by

K = P hT( )[h( h )Rt+/ th(ts/t
)t+s/t x ts/t ts/t x t+s/t t+s

1+ 2{x(xtBs/t) Pt+S/t}{hXX(Xt+ /t) P T (2.37)
+ {hxx tis/t ti/ x ti -{h (t 

2 xx t+s/t t+s/t xx t+s/t t+s/t
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The approximation given in (2.36) leads to the identical results obtained by

Athans et al. (27) for the scalar case but yields a slightly different result

for the vector case. However, in contrast to the result obtained by Athans

et al. the Kalman gain compensation term

1 T
2 hXx ( t+s/t : t+s/t{h xx( t+s/t) t+s/t

is always positive definite, as are the terms, h Pt+s/th and Rt+
s

of Eq.

(2.37). Hence, the matrix to be inverted in Eq. (2.37) will always be posi-

tive definite, for non-zero Rt+ . In the extended Kalman filter, the op-

timal gain Kt+ can be expressed in terms of either apriori or posterior

conditional covariance matrix, which is given in Eqs. (1.35) and (1.36). How-

ever, this situation is not possible in Eq. (2.37), due to the Kalman gain

compensation term.

2.6 Apriori Estimate Vt+s/t of Vt

By virtue of random variable xt+s , the posterior estimation error

Xt+s/t+s is an nxl vector random variable, and, hence, Vt+ represents an

nxn matrix of random variables and its apriori estimate which is the condi-

tional expectation of Vt+
s

given Yt can be obtained from the definition

Vt+s = t+s/t+s t+s/t+s

Vt+
s

= [xt+
s
- Rt+s/t -K (yt+s )t+

s
(2.38)

[x -t+s -K (y t+s/t)]t+s t-s/t tis tis tis/t

Substitution of Eq. (2.27) into Eq. (2.38) yields the following development.
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1V [{I-K h - K 1 hx :(P -Pt+s/t ) +v ]v~~~~~~~~~~~ (C - K xx+s -t+s t+s x t+s/t 2 xx t+st

I ̂
[{I Kt+shx}t+s/t K { h :(P -P )v

t+s x t+s/t ts 2 xx ts t+s/t t+s

or

V
t+s

= [I - K+shxPt+s[I - Kt+shx]
T

ti-s x ti-s t-

[{I- Kt+shx}t+s/t{h : (P Pt t) } Kt
tsx ti-t2 xx t+s t+s/t t+s t+s

1
- K t+s{ h :(Pt-s 2 xx t+s

(2.39)

- Pt+s/t) + t+ /t{I - Kt+s h }
T

1 -'1 TT
i- K {-h :(P -P )i-v }{-h :(P -)i-v I KT+ Kt+s 2 xx:(Pt+s-Ps t+s/t)+ t+s 2 xx:(Pt+s -Pt+s/t ts ts~~~~~~~~~~~~)+t+s}2TK+s

where the argument of hx and h is x xx t+s/t

Knowing that vt+s is independent of Yt and taking the condi-

tional expectation of both sides of Eq. (2.39) given Yt yields the follow-

ing approximate expression for the apriori estimate of Vt+

Vt+s/t {I -Kt+shx t+s/t t+s/t ts x ( )}T

(2.40)

+ Kt+s[2 {hxx(Xt+s/t) : Pt+s/t}{h x(t+s/t) t+s/t} T + Rt +s]K+
s

2.7 Posterior Conditional Covariance Matrix /
t+s/t+s

As pointed out in the previous section, V is a collection of
t+s

random variables. The conditional expectation Vt+s/t+ given Yt+s is a

posterior estimate of Vt+
s

and can be determined by estimating each element

of Vt+s in terms of the linear combination of the apriori estimate t+s/t

and a new observation Yt+s . The above argument is based on the Martingale

properties of the sequence Vt+ ,V t+/2,... ,Vt+/t and, hence, thet+s/i t+s/2'" tisit'"

same reasoning as that used in regard to Eq. (2.31) can be applied. Regard-

ing Vt+s as an n2 xl vector instead of nxn matrix, the estimation problem
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can be stated as follows: determine n2xm matrix Bt of the linear com-
t+s

bination

t+s/t+s = Vt+s/t 
+

Bt+s(Yt+s t+s/t.41)

such that the risk (see Appendix E)

R(B )=trE[(V )(V -)T 1 (2.42)
t+s trE[(Vt+s t+s/t+s t+s t+s/t+s )

is minimized. Substituting Eq. (2.41) into Eq. (2.42) leads to the following

result

R(Bt+s) = trE[{Vt+s Vt+s/t - Bt+s(Yt+s - t+s/t

(2.43)

{Vt+s -t+s/t Bt+(s t+s - t+s/t
)
) ]

The optimality condition for the minimum of R is given by the following or-

thogonality condition (see Appendix F)

E[{Vt+s -t+s/t-B t+s(Yt+s - t+s/t)}{Yt+s - gt+s/t T/Yt] (2.44)

A[(V~~ T
t+s t+s/t (Yt+s tYt+s/t) t t+s (Yt+s -t+s/t t)/ t] (2.4 5)

By the same argument as that used with regard to Eqs. (2.34), (2.35) and

(2.36) the right hand side (R.H.S.) of Eq. (2.45) is approximated as follows

R.H.S. = Bt+s[hx(Rt+ss/t)Pt+s/thx( t+s/t + Rt+s

i- '{h (1 ~ ).p 1{h (~ T ~(2.46)
2 xx (t+s/t t+s/t xx t+s/t t+s/t

Knowing that

E[Vtis/t t+s/t) /Yt+s = t+s/t (2.47)

the left hand side (L.H.S.) of Eq. (2.45) becomes
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L.H.S. = E[Vt+s( Yt +s- /t/Yt] (2.48)

After substitution of Eqs. (2.27) and (2.39) into Eq. (2.48), it can be easily

seen that all of the terms in Eq. (2.48) are of the fourth or higher order

moments, under the assumption that the probability density functions of es-

timation errors are jointly Gaussian. Therefore, the optimal gain Bt+
s

is

given as the ratio of the fourth to the second order moments and is neglected.

Hence,

B 0 (2.49)t+s

With this assumption, Eq. (2.41) leads to

V = V (2.50)
t+s/t+s t+s/t

It is interesting to note that both the posterior and the apriori estimation

errors are independent of observations available for the linear model and,

hence, the conditioning on the covariance matrices becomes unconditional.

Therefore, there are no distinctions between Vt+s/t+s and Vt+s/t Al-

though Eq. (2.50) shows that Vt+s/t+s is closely approximated by Vt+/t '

these are conceptually two different quantities. In the linear filtering

theory, these become identical and there is no distinction between them.

Since Vt+s/t is related to the apriori conditional covariance

matrix Pt+s/t through Eq. (2.40), the posterior conditional covariance matrix

Vt+/t+
s

can be expressed in terms of t+s/t From Eq. (2.50)

Vt+s/t+s = Vt+s/t - Kt+shx (t+s/t t+s/t t+shs x t+s/t

(2.51)
i t [1 ^hxX /). ts/}{h (Xtst 1s T T+K [ {hx (: P}h (:P + R ]K

t+s 2 xx tis/t tis/t xx tis/t tis/t tis t+s
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V ti , K - h ( )P h )KT
Vt+s/t+s t+s/t t+s x t+s/t t+s/t t+s/t x t+s/t t+s

+ Kt+s[hx(Rt+s/t)Pt+s/thx(t+s/t) t+s (2.52)

1h (}{h ^ ^ T
+ 2 xx t+s/t t+s/t xx t+s/t t+s/t t]Kt+s

Substitution of Eq. (2.36) into Eq. (2.52) yields the following relationships

P -K h(2.53)
t+s/t+s Pt+s/t t+s x(Xt+s/t )Pt+s/t (2.53)

The above relation is used to update the apriori conditional covariance matrix

Pt+s/t to the posterior conditional covariance matrix Vt+s/t+s after a new

observation Yt+s is processed. Once Vt+s/t+s is obtained, it can be used

as an initial condition for the integration of Eq. (2.23) from t + s to the

instant of a new observation. Finally, the procedures required to compute

the posterior estimate t+s/t+
s

can be summarized as follows:

dR t+s(tt+s/t))t+s/t 1
ds/ f(9 + /f P (2.54)ds t+s/t 2 xx t+s/t t+s/t

dPt t+s/t ) it f 0__)P - P f (T9 + Q (2.55)
ds x t+s/t t+s/t t+s/t x t+s/t t+s

) 1 h (t+s/t) : (2.56)
t+s/t t+s/t 2 xx t+s/t (2.5

K P hT(R )[h R )P h ( )i-Rit+s tisit x t+st x s/ti t+s/t x t+s/t t+s

~1*~~~~^ ^(2.57)

2 xx t+s/t t+s/t xx t+s/t t+s/t

t+s/t+s Rt+s/t + Kt+s -t+s/t (2.58)

= - K h (R )P(2.59)t+s/t+s t+s/t t+s x t+s/t) t+s/t (2.59)

In order to start the computation, Ro/° and Vo/° are required and they

are given by
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o/° = E[Xo/Yo] = E[x ] (2.60)

V = P (2.61)
0/0 0

where P is given as the covariance of the random variable x
o O

Depending on the particular problem, it may be possible to neglect

either the dynamic or the observation second order term. This might be the

case when the state dynamics are relatively smooth while the state-observa-

tion relationships are highly nonlinear or vice versa.

2.8 Computational Algorithm

The algorithm for computing the estimate Rt+s/t+ of xt+ by

processing each data point sequentially, can be summarized as follows:

1. Given Rt/t and Vt/t

2. Compute t+s/t and Pt+s/t by integrating Eq. (2.54) and

(2.55) with the given initial conditions Rt/t and Vt/t

until a new observation Yt+s is made at t + s

3. Determine Yt+s/t and K using Eqs. (2.56) and (2.57),
t+s/t t+s

respectively.

4. Compute t+s/t+s and Vt+s/t+s by updating t+s/t and

Pt+s/t through Eq. (2.58) and (2.59), respectively.

5. Given and Vt+s/t+s , the steps 2 through 4 can be

repeated.

2.9 Continuous Second Order Filter

An approximate filter for the case of continuous observation may

be obtained by passing to a formal limit. In doing so, Qt+s of the dynamic

state noise and Rt+
s

of the observation noise have to be replaced by Qts
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and Rt/s , respectively. This comes from the property of white noise re-

garded as a time derivative of Brownian motion (see Appendix C). For an in-

finitesimal observation interval s , it follows that

R R f (R + s f (9 (2.62)
t+s/t t/t /t 2 xx( t/t ) : 2t/t

tQ + sf(0Z ) svt f ( + sQ (2.63)t+s/t Vt/t + Sxt/t t/t x(t/t 
+
st (2.63

)

K Sp h (x )R (2.64)
t+s t+s/t x t+s/t t

Utilizing Eqs. (2.56), (2.58), (2.59), (2.62), (2.63) and (2.64) and passing

to a formal limit, the following continuous second order filter is obtained,

as s goes to zero.

dx lim t+s/t+s t/t
dt sio s

dRI 
f(= R 2 f () : V + K[y - h(R) - hxh (x) : V] (2.65):t 2 xx 2 xx

K = Vh (x)R-l (2.66)
X

dV lim t+s/t+s t/t
dt s+o s

d = f ()V + VfT + Q - v ()R-Ih (x )V (2.67)
dt x x x 

Note that the optimal gain K for the continuous filter is not the limit of

the optimal gain Kt+ given in Eq. (2.64).
t+s



CHAPTER 3

DESCRIPTION OF THE ORBIT DETERMINATION PROBLEM

3.1 Introduction

In order to compare the performance of the extended Kalman filter

and the various forms of the nonlinear second order filters developed in

Chapter 2, the methods are compared in a simulated study of a realistic or-

bit determination problem. The problem considered is that of estimating the

state of an interplanetary space vehicle during the orbiting and planetary

fly-by stages of a Jupiter exploration mission. The reason for choosing this

problem is that considerable attention has been given to the exploration of

deep space and the reconnaissance of Jupiter is regarded as an important

scientific objective. However, the past Jupiter encounter missions are of

comparable significance and those missions are made practical by utilizing

the powerful trajectory shaping capabilities of Jupiter's gravitational field.

One such mission, the so-called "Grand Tour", involves successive fly-bys

of the planets, Jupiter, Saturn, Uranus, and Neptune. The Grand Tour is the

subject of considerable current interest, since a mission opportunity occurs

in the last half of the 1970's and will not reoccur for another 179 years.

A critical problem in the design of a space vehicle to perform a

deep space mission such as the Grand Tour is the accurate determination of

the expected trajectory which is the basic knowledge required for the guidance

correction. Because of numerous sources of error, the true trajectory is

never known to us. A major contribution to those errors, access during the

encounter trajectory, due to imperfect pre-encounter guidance corrections

which result from pre-encounter orbit determination errors. In regard to

33
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this situation, it is interesting to see how the nonlinear estimation proce-

dures perform when compared with the extended Kalman filter.

3.2 Equations of Motion

The motion of a space probe relative to a given planet is closely

approximated by the solution of the following vector stochastic differential

equations

.. - r r
r t

r L= , 1 , Us[ - + u (3.1)
p t

where p and p
s

are the gravitational constants of the target planet and

the Sun, respectively, and u is a vector of Gaussian process noise and

where r is the position vector of the space probe relative to the target

planet, r
t

is the position of the target planet relative to the Sun, and

r = r + r is the position of the probe relative to the Sun.
p t

Eq. (3.1) can be reduced to a system of first order differential

equations by the following transformation

r = v
(3.2)

-r r
* = r us [ - -rp ] + u

P t

In a cartesian coordinate system centered at the target planet, the equations

of motion can be expressed in component forms as

X = U

Z= (V

7, : W (3.3)
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x X + X X
U P a- Us [r - s i + U (3.3)

Y +Y Y
$ Y t t

[ r_ r y
p t

Z +Z Z
Z t t

-W =- - P s [ r ] + Uz

p t

The heliocentric position components of the target planet can be expressed as

X = X* + bt t x

Y = Y* + b
t t y

Z
t

= Z* + b
t z

where X* , y* and Z* are the components of the heliocentric position vec-
t t t

tors obtained from the planetary ephemeris and b , b and b are com-
x y z

ponents of bias in the position vector due to the errors in the planetary

ephemeris. The components of the planetary position bias are assumed to be

constant over the time period of interest. The position vector of target

planet changes very slowly and this assumption appears to be reasonable.

3.3 Augmented State Vector

Since the uncertainty in the position of the outer planets (Jupiter

in this study) is assumed to be an influential error source, the planetary

bias vector b , b and b are assumed to be unknown parameters and are
x y z

estimated. To achieve this objective, the original state vector given by Eq.

(3.3) is expanded to include bx , b and b and the augmented state is
x definedy z

defined as
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T
x = [X,Y,Z,U,V,W,bx,by,b ]

The augmented state vector is governed by the (9xl) vector differential equa-

tion

x = f(x,t) + u (3.5)

where

f = U f2 = V , f = W

f -x X + X X

f4 = ' -u - Ps [--~r
p t

Y Yt ++Y Y
f 5 -1 [--- - -] + u (3.6)

p t Y

Z Zt 
+

Z Z
f6 P - - Ps [ r--- --

-

] +U6 iI I rt +
P t

f7 = f =f = 0

3.4 State-Observation Relationships

There are four types of observations considered: range (p) ,

range-rate (p) , sun-planet angle (a) , and star-planet angle () .

The first two of these are Earth-based while the other two are onboard obser-

vations. Any combination of the above four observations can be processed

at any time interval. Such a procedure is necessary if the characteristics

of each type of observation are to be determined.

1. The range measurement is given by

P = (P )1/2 +vp (3.7)
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where v is the random error in the range measurements and where
p

p = r -r
p s

In Cartesian components

p = [(X - X 2 ( )2 + (Z - z )2]1/2 + v (3.8)
s s p

where X , Y and Z are the heliocentric position coordinates of the

tracking station, and X , Y and Z are the heliocentric position coor-

dinates of the probe.

2. Range-rate observation

Differentiation of Eq. (3.7) with respect to time yields the range-

rate observation given by

P P + v (3.9)
P P

where v- is the random observation error. In the heliocentric cartesian
p

coordinate system, the expression becomes

-p = [(X )( -Z )(Z - Z )]/p + v. (3.10)p s p s p s p 5 p p p

3. Sun-planet angle

The onboard angle measurement a , defined as the smaller angle be-

tween the probe-planet line and the probe-sun line, is given by

-1r r
a = cos [ P- ] + v (3.11)

p

where -va is the observation error.

Since r = rt + r , Eq. (3.11) can be written as

r + r

a = os [ rr ] + vc (3.12)
rr a
P
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which in component form becomes

= cos-1 [(XXt + YYt + ZZt + r2 )/rrp] + v (3.13)

where

r = [X2 + y2 + Z2]1/2

and

r = [X2 + y2 + Z2]1/2
P P P P

4. Star-planet angle

The last star-planet angle measurement B , defined as the smaller

angle between the probe-planet line and the line from the probe to a reference

star, is given by

cos 1 [-r S + v (3.14)
r

where v 6 is the random observation error and S is a unit vector in the

direction of the reference star. The star is assumed to be at an infinite

distance so that S is a constant vector. Since the inclination of Earth

and Jupiter are nearly zero, it follows that Earth, Jupiter and the space

probe lie in very nearly the same plane. Hence, it is desirable to use a

star which is not in this plane as a reference star to obtain information

about the out-of-plane motion. Star-planet angle measurement can be ex-

pressed in cartesian components as

6 = cos-l [-(XS + YS + ZS )/r] + v
B

(3.15)

where S , S and S are the direction cosines of the reference star
x ydirection. z

direction.
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3.5 Motion of the Tracking Station

Range and range-rate observations are taken at a tracking station

on the Earth and the heliocentric position vector of the tracking station

is given by

r = r + R (3.16)
s e

where r is the heliocentric position of the Earth and R is the geocen-

tric position of the tracking station. The vector R is computed as a

function of time from the relationship

R cos 6 cos a (t)
s s

R [T] R cos 6 sin a (t) (3.17)

R sin 6

where a is the right ascension of the tracking station,
s

6 is the declination (latitude) of the tracking station,
s

R is the magnitude of the vector R and the radial distance of the

tracking station from the Earth's center,

and

T = cos E sin 

O -sin E cos

is the rotational matrix which transforms the coordinates from an equatorial

to an ecliptic coordinate system which is chosen to be the heliocentric sys-

tem. The argument e is the obliquity of the ecliptic. With the assumption

that the Earth's rotation is uniform, the right ascension of the tracking

station can be expressed as
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as(t) s(t
o
) + as (t - t )

Differentiation of Eq. (3.16) with respect to the time yields the heliocen-

tric velocity of the tracking station.

-s R cos 6 sin a (t

s r [T] s R cos 6s a(t)C (3.18)

_0

The zenith angle p of the probe with respect to the tracking station is

given by

cos ¢ = R P (3.19)
Rp

The probe is assumed to be visible from the tracking station if cos p is

positive.

3.6 Simulation of Errors

Each component of the noise in the equations of motion (3.1) and

observation-state relations is modeled as a normally distributed scalar ran-

dom variable with zero mean and known variance. The noises are simulated

by sampling at random from a standard normal distribution function (zero

mean and unit variance) and then scaling the sampled number by the given

standard deviation.

The normal density function of the random variable 5 is given by

f() = 1 exp [- 2 m ] (3.20)

where m and a are the mean and the standard deviation, respectively. Eq.

(3.20) can be written in terms of the standard normal distribution function



1 z 3 2
F(Z) = - J exp(- -)dC (3.21)

by the transformation

- m (3.22)

For the random variable of zero mean

= o (3.23)

The inverse of Eq. (3.21) can be approximated by the curve fit equation (40)

C + C r + c2r2

r - 1 + d r + d 2F + d I3
1 2 3

(3.24)

F = [Zn(F- 2 )] 2

where the coefficients c. and di have the following values

C = 2.515517 d = 1.432788
0 1

CO = 0.802853 d = 0.189269
1 2

C3 = 0.010328 d = 0.001308
3 3

Sampling of the standard normal distribution is accomplished by first samp-

ling at random from a uniform distribution to obtain a value for F(O < F < 1)

and then computing the standard normal random number z from Eq. (3.24).

The simulated noise is then computed as the product of the sampled value z

of the standard normal random variable' ' and the standard deviation a by

Eq. (3.23).

Observational data are simulated by adding random numbers i which

are generated in the manner described above to the observation value computed

from the true state and state-observation relationships discussed in Section

3.4, i.e.
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Y = Y + v (3.25)
true

Noise in the equation of motion is simulated in the same way as

above and then added to the equation of motion at discrete points of time

which correspond to the integration step.

3.7 Computer Program Description

The program NONSTEP (NONlinear STate, Estimation Program) is dev-

eloped for comparison of the extended Kalman filter and the nonlinear es-

timation algorithms by applying each to the study of an interplanetary orbit

determination problem. Special emphasis is given to the planetary fly-by

mode although the planetary orbiter is considered also.

The program was written in FORTRAN IV for the CDC 6600 computer

system at The University of Texas at Austin. Since this computer has a single

precision word length of sixty bits, single precision arithmetic was consid-

ered to be adequate for most calculations. The initial frame of the program

was founded on the existing program STEP (STate EStimation Program) developed

by Jones (28) at The University of Texas at Austin.

The three basic functions of the program, i.e., simulation, estima-

tion, and evaluation, are conducted sequentially according to a schedule

specified in the input data. The program NONSTEP has a capability for carry-

ing out the nonlinear estimation algorithms as well as the extended Kalman

filter, depending on the input data IFILTER. If IFILTER = 1, the extended

Kalman filter is carried out. If IFILTER = 2, the nonlinear filter is

implemented and, finally, if IFILTER = 3, the nonlinear estimation proce-

dure is first carried out and then, with the same input data and random

noises, the extended Kalman filter is carried out. With this latter option,
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a direct comparison of the linear and nonlinear algorithms can be made.

In order to reduce the storage space for compilation, the program

NONSTEP employs OVERLAY. The main OVERLAY(0,O) controls the overall program.

The OVERLAY(1,0) conducts all the plots of the output data for the case of

IFILTER = 1 or 2. The OVERLAY(2,0) does the same thing for the case of

IFILTER = 3. The OVERLAY(3,0) conducts all of the calculations involved in

simulations, estimations, and evaluations and transfers the output data to a

magnetic tape for the plot of OVERLAY(1,0) or OVERLAY(2,0).

In conjunction with the apriori conditional covariance matrix, the

true trajectory and apriori estimate are generated simultaneously through

parallel numerical integrations of the apriori estimate and the apriori con-

ditional covariance matrix. A general purpose numerical integration subrou-

tine is used to simultaneously integrate the differential equations. The

routine consists of a Fourth Order Adams predictor-corrector scheme with a

Runge-Kutta starter. Although the integration is carried out in single-pre-

cision, the dependent variables are carried in double-precision to minimize

round-off errors.

Observational data are simulated by generating random noise and

superimposing it on the true observation computed from the true state.

A simplified block diagram of the computational logic is shown in

Fig. 5.
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CHAPTER 4

DISCUSSION OF NUMERICAL RESULTS

The purpose of this chapter is to determine the characteristics of

second order filters on the basis of a numerically simulated study. There

are two basic classes of second order filters to be examined. The first is

the modified Gaussian second order (MGSO) filter and the other is the modi-

fied truncated second order (MTSO) filter. The basic difference between

these two filters is that the Kalman gain compensation (KGS) term enters with

a plus sign of one-half in the first filter and with a minus sign of one-

fourth in the later filter. Both filters include a dynamic second order (DSO)

term, (fxx : P)/2 , in the dynamic equation (2.54) and an observation second

order (OSO) term, (h x : P)/2 , in the predicted observation equation (2.56).

4.1 Various Simplified Forms of Second Order Nonlinear Filters

Although the modified Gaussian second order filter and the modified

truncated second order filter are developed using a model in which both state

and the observation equations are nonlinear, there is a possibility that the

actual problem will consist of a highly nonlinear dynamic equation and a rela-

tively linear observation or vice versa. In this situation, the second order

term in the relatively linear relation may be neglected, and, hence, several

possible simplified nonlinear estimation algorithms can be obtained, depend-

ing on the presence of the dynamic second order term, observation second

order term, and the Kalman gain compensation term in various combinations.

The resulting filters are tabulated in Table 1. The Filters 1, 8 and 9 of

Table 1 correspond to the MGSO Filter, the MTSO Filter and the extended

Kalman (EK) Filter, respectively. The Filter 4 is specifically referred to

48
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as the Kalman Gain Compensated (KGC) Filter. The performance of each of the

Filters, 1 through 8, is studied through numerical simulations and compared

with the EK Filter which is the most popular filter at present time. The

nonlinear filter is first executed with the input data given in Tables 5

through 9, and then the EK Filter is executed under the same conditions.

The same sequence of random numbers is used to simulate the state noises as

well as the observation noise in both filters. The conclusions reached in

this investigation are based on the results of several hundred simulations.

The results obtained in eighteen of.these simulations are presented in this

report. These results obtained in these cases are representative of the

results obtained in the remaining studies.
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4.2 The Nominal Trajectory and Error Sources

The nominal trajectories are generated by integrating the equations

of motion (3.1) with dynamic state noise set equal to zero. In other words,

the random noise u is simply set to zero. Considering the possibilities

of applying the nonlinear algorithm to the problems of a near-Earth or lunar

satellite, Mariner and Viking missions, simulations are conducted not only

for a hypobolic orbit, but also for an elliptic orbit. The nominal trajec-

tory of the elliptic orbit is shown in Fig. 6 and the hyperbolic orbit in

Fig. 7. The periapsis and apoapsis for the elliptic orbit occur at about

4.6 and 20 days, respectively. The periapsis encounter in the hyperbolic

orbit occurs at about 12.7 days.

As seen in Figs. 6 and 7, the dynamic nonlinearity in the elliptic

orbit is very much concentrated near periapsis and apoapsis, but it is well

distributed over the entire trajectory when compared with the hypobolic or-

bit. In the hypobolic orbit, the dynamic nonlinearity is concentrated almost

entirely near the perigee, and the pre- and post-encounter trajectories ap-

pear to be straight lines.

The initial conditions for the hypobolic and elliptic orbits are

obtained from the nominal Grand Tour mission trajectory with Earth launch

date and Jupiter encounter (28). For the elliptic orbit, the velocity com-

ponents are reduced so that it yields an elliptic orbit with a proper period

of 30 days. The nominal trajectory initial conditions are given in Table 2

and the orbital elements of Jupiter and Earth are listed in Table 3.

The true trajectory (or state) is generated by adding a vector

Gaussian random forcing term u described in Section 3.6, to the equations

of motion (3.1).
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The actual observations are simulated with the data given in Table

4 by using the following procedure:

1. Compute the nominal observation through the state-observation

relationship with the true trajectory obtained as described above.

2. Gaussian random noise is generated as described in Section 3.6

and added to the nominal observation.

The standard deviation oQ of the dynamic state noise u and

aR of observation noise v are given in Tables 5 through 9 according to

the simulations. Since it is common practice to employ an adequate aQ for the

dynamic noise u , even though there is no dynamic noise assumed, two values

of aQ are used. aQT is designated for the true trajectory and oQA is

adopted for the estimate of the state.
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4.3 Characteristics of the Filters

The results of Simulations 1 through 8 are presented primarily for

the purpose of describing the characteristics of the filter algorithms in

Table 1.

For each simulation, position and velocity estimation errors are

plotted and they are compared with results obtained with the extended Kalman

(EK) filter which is filter 9 in Table 1. In addition to the estimation er-

rors, the conditional variances and the observation residual which is defined

as the difference between the actual observation and the predicted observa-

tion are shown. Unless stated otherwise, all figures are obtained by con-

necting every third data point with straight lines. There are thirty data.

points between two adjacent symbols. The main reason for sampling every

third data point is due to the difficulty of tracing the original plot ob-

tained from the Calcomp computer ploter when every data point is plotted.

In this study, the planetary bias is approximated as a constant

parameter and its value is estimated. But, the estimation errors and the

conditional variances remain virtually constant with the onboard angle mea-

surements during the time period of interest. Furthermore, the difference

between results obtained with the nonlinear filters and the EK Filter are

negligible. Consequently, the estimation errors and conditional variances

corresponding to the planetary bias are not presented in this report.

Since the nonlinear filters are compared with the EK filter, the

estimation errors and conditional variances for the EK filter in the Simula-

tions 1 through 8 should be identical. However, the actual figures are not

identical because of scale factors.

The EK filter performs adequately up to three days and thereafter



59

becomes unstable. Actually, right after the three day period, the condition-

al variances decrease drastically and the estimation errors take several sharp

oscillatory spikes during a short period of time while drifting away from

zero. The sharp decrease in conditional variance is attributed to the fact

that h PhT dominates R in Eq. (1.35) and, hence, the negative term in

Eq. (1.33) will be quite large. The position and velocity estimation errors

and the conditional variances for the EK Filter are shown in Figs. 8-a, 8-b,

10-c, and 10-d.

Immediately after encounter (12.7 days), the velocity estimation

errors remain at a relatively constant level and, hence, the position esti-

mation errors grow linearly, in an unbounded manner, and divergences occur

eventually. The velocity estimation errors become extremely unstable shortly

after encounter and the magnitude oscillates several times with sharp spikes.

This phenomena is not seen in the figures shown here because of the fact

that every third data point, instead of every data point, is plotted. In

particular, the velocity components of the conditional variances are very

small after encounter, and the filter becomes saturated. Therefore, the ob-

servations taken after encounter cannot improve the estimate very much. The

characteristic of poor estimation after encounter is an indication of the

importance of the pre-encounter navigation.

Figs. 8-a and 8-b show the position and velocity estimation errors

for the Simulation 1 which compares the Filter 1 (or MGSO Filter) and the EK

Filter. Both Filters perform adequately up to three days and there are no

significant differences between them. After three days, the EK Filter be-

comes unstable. However, the MGSO Filter performs properly up to encounter.

Both Filters diverge after encounter.
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It is interesting to notice that the MGSO Filter obtains a more

accurate estimate of the Y and Z components and less accurate estimate

of the X components after encounter than the EK Filter does.

Although the corresponding conditional variances are not specifi-

cally shown here, they are almost identical to the ones given in Figs. 11-d

and 11-e. It is interesting to note that the conditional variances for the

MGSO Filter are considerably larger than those of the EK Filter especially

in the region from three to thirteen days, during which the MGSO Filter es-

timates surprisingly better than the EK Filter.

Figs. 9-a and 9-b show the position and velocity estimation errors

for Simulation 2 which compares Filter 2 and the EK Filter. Filter 2 per-

forms considerably better than the EK Filter throughout the entire region.

For future discussion the oscillations around encounter are emphasized here.

The conditional variances are identical to the one shown in Figs. 11-d and

11-e, which also correspond to Simulations 1 and 4.

From Table 1, it can be seen that the only difference between Fil-

ter I (or MGSO Filter) and Filter 2 is that the dynamic second order (DSO)

term is dropped in Filter 2. Therefore, the comparison of Filter 1 and Fil-

ter 2 shows the effect of DSO term. As seen in Figs. 8-a, 8-b, 9-a, and 9-b,

the effect of DSO term has a significant effect after encounter. By dropping

the DSO term from the MGSO Filter (Filter 1), a far better estimate is ob-

tained.

A number of simulations indicate that the DSO term is very sensi-

tive to the initial covariance matrix. For the larger values of the initial

variances, less satisfactory estimates are obtained. The simulations indi-

cate that the MGSO Filter diverges while the EK Filter yields a convergent
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estimate whenever large initial variances are used with relatively large

state noise aQ For small initial variances and small state noise aQ,

the differences between the two Filters MGSO and EK Filters are negligible.

This implies that none of the DSO, OSO and KGC terms are important. Appa-

rently, most of the orbit determination problems which are not influenced

by a state noise u fall in this category and the differences between the

EK Filter and the MGSO Filter are negligible. However, there appears to be

a range in which the initial variances can be so chosen that the effect of

DSO term improves the filter performance. But, it may not be easy to select

such an initial covariance matrix in a complex multi-dimensional problem,

because the chosen set of initial covariance matrix may very well cause the

DSO term to affect the filter in such a way that the estimate of some com-

ponents can be improved while the estimates of other components is degraded.

An example of this situation is shown in Figs. 8-a and 8-b.

Usually, if the EK Filter converges, i.e., if the conditional var-

iances remain small, the MGSO Filter acts like the EK Filter. This is due

to the fact that the effect of the DSO term can be overridden by the small

variances associated with the observations. In contrast, if the covariance

reduction caused.by the observations cannot override the effect of the DSO

term, which will occur when the initial variances and dynamic state noise

are large, then the MGSO Filter diverges because of the DSO term even though

the EK Filter converges. A large conditional variance allows the estimate to

depart from the true trajectory because of the DSO term and cause a bad pre-

dicted observation and, consequently, large observation residual which will

lead to filter instability and divergence.

Figs. 11-b and 11-c show the estimation errors for Simulation
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4 which compares Filter 4 with the EK Filter. As seen in Table 1, Filter 4

includes only the KGC term and excludes the DSO and OSO terms. Filter 4 is

referred to as the Kalman Gain Compensated (KGC) Filter.

The comparison of the filter performance with Filter 2 will show

clearly the effect of the OSO term and the comparison with the EK Filter

reflects the effects of the KGC term. From Figs. 11-b and 11-c, it is seen

that the Filter 4 (KGC Filter) estimates show excellent agreement with the

true trajectory throughout the entire region. Both the KGC Filter and the

EK Filter appear to be identical for the first three days. After three days,

the EK Filter diverges. Although the EK Filter performs poorly over almost

the entire region except for the first three days, the poor performance after

encounter results from the behavior which occurs from three days to encounter.

The accumulated large estimation errors at encounter influence the estimate

throughout the remainder of the period.

The phenomena above can be explained as follows: the conditional

variances become quite small after encounter, and the filters become insen-

sitive to observations. Therefore, a filter that can estimate accurately

around encounter can retain an accurate estimate after encounter. Similarly,

any filter which performs in an unsatisfactory manner around encounter will

yield an inaccurate estimate after encounter.

Fig. 11-a shows the observation residuals for Simulation 4. The

observation residual pattern for the EK Filter starts to grow from three

days and is influenced by a large spike around encounter. After encounter

the residual patterns for the EK Filter and the KGC Filter remains identical

to each other.

The conditional variances are shown in Figs. 11-d and 11-e. It is
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interesting to note that the conditional variances for the EK Filter undergo

a sharp reduction at a time of about four days following which the estima-

tion errors begin to drift away. The conditional variances for the KGC Filter

retain a larger value for the period of time from four to twelve days during

which the poor performance of the EK Filter has been accumulated.

From the simulations, it was noticed that the KGC term is negli-

gible at the beginning in comparison with the other terms h PhT and R in
x x

Eq. (2.57). But, it grows rapidly and becomes the dominating term from three

to twelve days. As a matter of fact, the maximum value of the KGC term is

about ten times larger than the other two terms. The KGC term becomes again

negligible after the encounter. The above fact implies that the observation

nonlinearity is very severe from three to twelve days. The observations

outside this region appear to be relatively linear. The severe observation

nonlinearity near encounter is seemed to be caused by the dynamic nonlinearity.

The same investigation was made on the other type of observations. The sun-

planet angle measurement has almost the same characteristics as the star-

planet angle measurement. However, the range and range-rate observations do

not appear to be influenced by the second order terms and the KGC terms for

both observations are negligible. Hence, no difference between the KGC Fil-

ter and the EK Filter is seen.

From Eq. (2.57), it can be seen that a large KGC term yields a

smaller optimal gain K than that which results in the EK Filter. Hence,

a smaller conditional covariance reduction occurs and a larger posterior covar-

iance matrix results, as can be seen from Eq. (2.59). In Figs. 11-d and 11-e

exactly the same phenomena described above, happens in the region from four

days to encounter.



64

Between observations, the conditional variances vary according to

the differential Eq. (2.55) and the direction of change depends on the signs

of the Jacobian matrix f . At the time of the observation, Eq. (2.59)

governs the conditional covariance matrix reduction. The conditional var-

iances increase only through the dynamics, namely, the signs of fx and de-

crease by either the dynamics or observations, namely h . For example,

the reduction for the EK Filter around four days is attributed to the ob-

servations and the one near twelve days appears to be due to the sign changes

of f
x

It appears that near encounter, the dynamic nonlinearity overrides

the information gained through the observations. Physically, this means that

a severe dynamic nonlinearity causes bad predicted observations and observa-

tion nonlinearity. Therefore, large observation residuals are inevitable.

In this situation one can follow one of two procedures:

1. Discard the observations during this period.

2. Try to update the apriori estimates with larger gains, K

It appears that the EK Filter follows the second course while the KGC Filter

takes the first course. The KGC Filter yields a large value for the condi-

tional covariance matrix, and hence, leads to a small value for the gain K

because of the KGC term. This means that the KGC Filter places less weight

on each of the observations obtained during the period of time in which

dynamic nonlinearity is very severe.

In addition to the large value for K , the observation residual

is so large during the brief period of time, as seen in Fig. 11-a, that the

correction to the apriori estimate in the EK filter becomes excessively

Serge and a poor posterior estimate results. The conditional variances
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for the KGC Filter depend more on the state dynamics in the region of a

severe dynamic nonlinearity. The sharp decrease of the conditional variances

near encounter is not due to the observations but due to the sign changes

of the Jacobian matrix f . A large integration step size often causes a
x

negative variance near encounter. The sign change of the Jacobian matrix

f incorporated with the large conditional variances yields a negative

slope for the conditional variances which can result in negative variances.

The conditional variances for the EK Filter depend largely on the

observation, namely h in the region where dynamic nonlinearity is high.

The sharp decrease of the conditional variances for the EK Filter around four

days is an indication that the reduction by the observation overrides the

increase due to the state dynamics. Unusually large reductions of the con-

ditional variance which occur in EK Filter in the early stage of application,

is attributed to this phenomena. However, it can be a nuisance if the pos-

terior estimate is still far away from the true state even after the condi-

tional variances reduced to a zero level. The most interesting observation

is that the EK Filter becomes unstable and the estimate starts to drift away

from the true trajectory whenever the conditional variances are reduced sharp-

ly. Another interesting observation is that each of the Filters (1, 2 and 4)

which include the KGC term have almost identical conditional variances shown

in Figs. 11-d and l1-e, and have very similar observation residual patterns,

as shown in Figs. 11-a.

Figs. 12-a and 12-b show that the estimation errors for the Simu-

lation 5 which reflects the characteristics of Filter 5. Filter 5 includes

only the OSO term. Filter 5 performs better than the EK Filter from three to

nine days. Apparently, the observation second order improves the performance



of Filter 5 by using the proper sign. The poor performance of Filter 5 be-

tween nine and twelve days reflects the fact that the OSO term influences

the filter with the wrong sign. The poor estimates of Filter 5 after en-

counter are due to the propagated effect of the poor estimate at encounter.

Figs. 10-a and 10-b show the estimation errors for Simulation 3

which compares Filter 3 with the EK Filter. Filter 3 contains both the DSO

and the OSO terms. By comparing Figs. 10-a and 10-b with Figs. 12-a and

12-b, the effect of the DSO term is shown significantly after encounter.

The estimation errors for Filter 3 are considerably larger than those of

Filter 5 after encounter. The difference would be the negative contribution

of the DSO term in the Filter 3, i.e., the DSO term affects the filter with

the wrong sign. The conditional variances are shown in Figs. 10-c and 10-d.

These figures also represent the conditional variances resulting in Simula-

tion 5. It is interesting to note that both Filters (3 and 5) do not con-

tain the KGC term and the conditional variances are very similar to the one

given by the EK Filter and quite different from those of Filters 1., 2 and 4

which include the KGC term. Fig. 10-e represents the observation residuals

of Simulation 3. This observation residual pattern which contains a large

spike (even larger than that of the EK Filter) is seen also in Simulation 5.

The smooth residual pattern (Fig. 11-a) of the Filters 1, 2 and 4 is primar-

ily attributed to the presence of the KGC term and its side effects.

Simulations 6, 7 and 8 are conducted mainly to describe the char-

acteristics of the modified truncated second order (MTSO) filter which is

designated as Filter 8. For Simulations 6, 7 and 8, only the X components

of the position and velocity estimation errors, observation residual and the

conditional variances V11 and V44 are shown in the corresponding figures.
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The other components exhibit similar characteristics and are not shown in

this report to eliminate unnecessary space. The only difference between the

MGSO Filter and the MTSO Filter is that the KGC term enters with a plus sign

of one-half in the first Filter and with a minus sign of one-fourth in the e

second. As previously pointed out, the KGC term is negligible at the begin-

ning but grows rapidly up to ten times the value of the combination of the

other terms, h Ph
T

and R , as shown in expression (2.57). Following en-
x x

counter, the value of the KGC term reduces in value. From the above charac-

teristics of KGC terms, it is easy to conclude that the MTSO Filter contains

a potential signularity. The optimal gain K given by Eq. (2.57) with a

minus sign of one-fourth of KGC term instead of plus sign approaches plus

and minus infinity as the KGC term approaches the sum of the other two terms,

h Ph
T

and R from below and above. In addition, when the optimal gain is
x x

very large with a positive sign, the posterior conditional variance becomes

negative. The phenomena is clearly reflected in Filters 6, 7 and 8, and is

shown in Figs. 13-a, 13-b, 14-a, 14-b, 15-a, and 15-b.

In general, the MGSO Filter keeps the conditional variances larger

than those of the EK Filter. The MTSO Filter, in contrast, has a tendency

to keep the conditional variances smaller than those of the EK Filter. How-

ever, the variance becomes meaningless as the KGC term drives the variance

to a negative quantity in Filters 6, 7 and 8.
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4.4 Applications of the KGC Filter to the Hypobolic Orbit

In the previous section, several filters were discussed and the DSO

and OSO terms were characterized in conjunction with the KGC term. Since

the KGC term is the only term which improves the filter performance, the KGC

filter which includes only the KGC term is designated as the best filter

among those listed in Table 1.

The KGC filter is further tested through numerous simulations. The

Simulations 9 through 14 are conducted on a hypobolic orbit with the sun-

planet angle measurements. The simulations are designated to determine the

effects of state noise covariance matrix Q , initial state errors x /0 ,

integration step size, observation rate, initial covariance Vo/o and ob-

servation noise covariance matrix R . Simulation 10 is the reference case

to which all other simulations are compared. The input data are given in

Tables 7 and 8.

Simulation 9 is specifically designed to illustrate the effect of

using two different Q's in Eq. (2.55). oQT is the true standard deviation

of the state noise u which is used to compute the true trajectory. aQA is

the apriori standard deviation. The square of oQA is used in Eq. (2.55)

for the estimation procedure. It is common practice to include a Q in Eq.

(2.55), although there may be no state noise u assumed. This procedure is

followed to keep the value of the conditional variances above a certain level

so that the filter can maintain a reasonable gain K and, hence, will be

sensitive to the observations. Usually the EK filter reduces the conditional

covariance very rapidly after a few observations are made, and, hence, the

filter becomes saturated and insensitive to the observations.

Figs. 16-a and 16-b show the position and velocity estimation
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errors, respectively, for Simulation 9. The conditional variances and ob-

servation residual are almost identical to the ones givren in Figs. 17-c,

17-d and 17-e which are obtained by using the same aQT and cQA The

observation residual pattern should not be assumed to be zero except during

the brief time interval in which the spike occurs. The non-zero value of

the residuals do not show up on the scale used to plot the results.

Since the sun-planet angle measurement is restricted to the eclip-

tic plane, the measurement does not include very much information on the Z

components of position and velocity. This fact is reflected in the figures

related to the Z components from zero to ten days. Both the EK filter

and the KGC filter perform reasonably well up to eight days. As a matter

of fact, they are almost identical. The EK filter starts to drift away from

the true trajectory after eight days. Around twelve days, the EK filter be-

comes extremely unstable, oscillates several times with sharp spikes during

this short period of time and then diverges eventually. The oscillatory

spikes near encounter are not shown in the figures simply because only every

third data point is shown in the figures. As seen in Fig. 17-e, the esti-

mate with the EK filter is influenced by a spike in the observation residual

pattern around encounter. The actual observations which depend mainly on

the true states and the small observation noise contain equally good infor-

mations at any time. But the predicted observation depending on the current

estimate can be quite erroneous. The erroneous observation residuals around

encounter are incorporated with a large optimal gain, K , during the same

period and the update of the apriori estimates is, consequently, too large,

causing the EK filter to diverge.

The KGC filter keeps the conditional variances large in the critical
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period of time from eight to twelve days. As a result, the KGC term dominates

the other two terms, h PhT and R-, and the values of the optimal gain, K ,
x x

remain small. Through this effect, the KGC term makes the filter insensitive

to the observations which could be erroneous, in the region where the dynamic

nonlinearity is very severe.

Simulation 10 shows the effect of using the same values for aQT

and aQA It is noticeable that Simulation 9 which uses two different val-

ues for oQT and QA yields slightly smaller estimation errors for both

the EK and KGC filters than those of the Simulation 10 which uses the same

value. Since the sun-planet angle measurement is restricted to the ecliptic

plane, the EK filter experiences severe nonlinearity effects on the Z com-

ponents. The effect can be seen in the Z components of the conditional

variances shown in Figs. 17-c and 17-d.

Simulation 11 shows the effect of the initial state errors. The

errors are chosen ten times larger than those of Simulation 10. The conver-

gence characteristics, except the Z components, appear to be well behaved

for both filters immediately after taking the observations. However, the

EK filter displays instability and divergence characteristics around en-

counter, although the KGC filter continues with an accurate estimate through-

out this extremely nonlinear region.

Overall, the estimation error patterns shown in Figs. 18-b and 18-c

are very much the same as those of Simulations 9 and 10, except during the

first few days. The observation residual pattern is shown in Fig. 18-a and

the conditional variances are almost identical to the one given in Figs. 17-c

and 17-d. Again, the residuals outside the spike zone do not show up because

of the relatively small size compared with the spike.
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Since the nominal trajectory changes very rapidly around encounter

in the hypobolic orbit and near periapsis in the elliptic orbit, the dynamic

nonlinearity appears to be very severe in these regions and, consequently,

so is the observation nonlinearity. In order to minimize the effects of the

nonlinearities, a variable integration step size and observation rate are

adopted in the Simulation 12. Initially, the integration step size and the

observation intervals are set to 1/10 day, and then the actual integration

step size, ATi , and observation interval, AT , are determined as follows:

AT. = AT = (1/10) 'Integer Value of (r/rO) , r > r

or

AT. = AT (1/10) / Integer Value of (r /r) , r > r

where r ° is the initial distance between the spacecraft and the target

planet, Jupiter, and r is the current distance. As seen in Fig. 7, ATi

and ATo , for example, become nearly 1/20 of the initial step size, 1/10

day near encounter in the hypobolic orbit.

Figs. 19-a and 19-b show the estimation errors for the position

and velocity components. An interesting fact about the error pattern of

Simulation 12 is that the signs are reversed when compared with those of

Simulation 10. Figs. 19-c and 19-d show the conditional variances and a

slightly different pattern is seen near encounter when compared with those

in Figs. 17-c and 17-d.

Simulation 13 is conducted with a ten-times larger initial condi-

tional variances of the velocity components than those of Simulation 10. Due

to the larger initial conditional variances, the KGC term starts influencing

the KGC filter earlier than it does in Simulation 10. Figs. 20-c, 20-d and
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20-e represent the conditional variances and observation residuals, respect-

ively. Estimation errors are shown in Figs. 20-a and 20-b.

Simulation 14 shows the effect of a large observation noise stand-

ard deviation a
R

in the KGC filter. A value ten times larger than the

value of aR which was used in Simulation 10 was adopted as an observation

noise standard deviation in Simulation 14.

It is found in the EK filter which does not include the KGC term

that h PhT dominates R in Eq. (1.35) during the early stage of estima-
x x

tion. Later the values of R dominate. From the above observation, it is

understood that the KGC term which is negligible when compared with the

other two terms, h Ph
T

and R in Eq. (2.57), cannot affect the performance
x x

of the KGC filter very much. But in the region where the KGC term dominates

the other two terms and R is larger than h PhT , the effect of a large
x X

R shows up. For example, consider the period from nine to thirteen days

in Figs. 21-b and 21-c. After encounter, the value of the KGC term diminishes

due to the combined effect of small conditional variances and observation

second partials h and thereafter the KGC term has virtually no influencexx

on the KGC filter. Therefore, the KGC filter performs like the EK filter

after thirteen days. For a small 0 R , the effect of the KGC term becomes

very significant and the KGC filter is very desirable whenever a smaller aR '

or equivalently accurate observation, is available.

The corresponding conditional variances and observation residuals

are shown in Figs. 21-d, 21-e and 21-a, respectively.
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4.5 Application of the KGC Filter to the Elliptic Orbit

The KGC Filter is applied to the problem of determining an ellip-

tic orbit around Jupiter with sun-planet, star-planet and range-rate plus

sun-planet angle measurements. Since the variation of the Z components in

the nominal trajectory shown in Fig. 6 is very small compared with the X

and Y components, the initial state errors for the Z components of posi-

tion and velocity are chosen as one-tenth of those of X and Y components,

i.e., X and Y components of position and velocity estimation errors are

initially chosen as 103 km and 10- 4 km/sec , respectively, and Z com-

ponents as 102 km and 10- 5 km/sec , respectively.

Figs. 22-a and 22-b show the estimation errors for Simulation 15.

Unlike the hypobolic orbit, the EK Filter gradually drifts away after fifteen

days during which time the dynamic nonlinearity affects grow large. The con-

ditional variances are shown in Figs. 22-c and 22-d. Fig. 22-e shows the

observation residual pattern which consists of every tenth data point con-

nected with straight lines. Simulation 18 is designed to see the performance

of the KGC Filter for a long period of time. The period of estimation is

extended to 62 days which is more than two revolutions of the elliptic orbit.

The same input data as that used in Simulation 15 are used for Simulation 18.

The estimation errors for the position and velocity are shown in Figs. 25-a

and 25-b. For the first 30 days, the estimation error patterns of Figs. 25-a

and 25-b match identically with the ones shown in Figs. 22-a and 22-b. An

interesting fact is that both the EK Filter and the KGC Filter exhibit a per-

iodicity in the estimation errors. However, the errors for the EK Filter

grow larger during the second revolution and reach an unacceptable value.

However, the KGC Filter realizes a very accurate estimate throughout the en-

tire period and, as a matter of fact, the estimation errors are considerably
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smaller during the second revolution than those during the first revolution.

Around the second periapsis, the EK Filter estimation errors exhibit spikes

in the velocity estimation error components and the numerical value of the

position changes sign. The conditional variances are shown in Figs. 25-c and

25-d.

From the examination of Figs. 25-a, 25-b, 25-c and 25-d, it can be

seen that the KGC Filter is superior to the EK Filter in the region where

the conditional variances of the KGC Filter are larger than those of the EK

Filter. The improvement achieved in the KGC Filter is strictly due to the

effect of the KGC term in the optimal gain K. Fig. 25-e shows the observa-

tion residual. It shows a couple of spikes around the second periapsis.

For the blown up scale, the residual pattern of every tenth data point for

the first 30 days matches with the one shown in Fig. 22-e.

Simulation 16 is conducted with sun-planet angle measurements. The

estimation errors shown in Figs. 23-b and 23-c reflect the characteristics

of the sun-planet angle measurement. Since the sun, Jupiter and the space-

craft are all almost on the ecliptic plane, the information about the Z

components is poor and the EK Filter determines a poor estimate of the Z

components of position and velocity. Figs. 23-d, 23-e and 23-a show the

conditional variances and the observation residual pattern, respectively.

The residual pattern is obtained by connecting every tenth data point with a

straight line.

The Simulation 17 is conducted with two kinds of observations, i.e.,

range-rate plus sun-planet angle measurements. Figs. 24-a and 24-b show the

estimation errors and the conditional variances are given in Figs. 24-d and

24-e. The Z components are estimated poorly again. Fig. 24-e shows the
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two observation residuals, one for the range-rate and the other for the sun-

planet angle measurement. With the data of Simulations 16 and 17, the filters

were examined for 62 days. The same characteristics discussed in Simulation

18 can be found. The conditional variances vary periodically and large spikes

can be found in the observation residual and velocity estimation errors for

the EK Filter. The EK Filter estimation errors are incomparable at the sec-

ond revolution. Actually, they diverge after the second periapsis. However,

the KGC Filter performs exceptionally well through out the entire period and

even better at the second revolution.

Simulations 1 through 8 are re-examined by using the variable inte-

gration step size and observation rate discussed in Section 4.4. The char-

acteristics discussed in the Section 4.3 are unchanged.

It is found that variable integration step size and rapid observation

rate do not change the characteristics of Simulations 15, 16, 17 and 18 ex-

cept that over all estimation errors are smaller than those of the constant

integration step size and observation rate. However, the improvement is not

significant considering the computer time. Usually, for this case, the EK

Filter reduces the estimation errors more significantly than the KGC Filter

does, but the EK Filter solution will diverge still.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

In the investigation described in the previous discussion, a compar-

ative study has been made of nonlinear estimation algorithms and their appli-

cation to the orbit determination problem for interplanetary spacecraft. By

using the properties of a Martingale series and Loeve's smoothing properties,

a second order nonlinear estimation algorithm is derived. The algorithm is

shown to be of the Gaussian second-order class as distinguished from the

truncated second-order class. Both classes of second order filters retain a

second order term in the state dynamics, the observation state relation and

in the optimal weighting matrix (Kalman gain), respectively. The merits of

each of the algorithms as well as the influence of each second order term is

evaluated by a numerical simulation of the orbit determination for a Jupiter

fly-by and Jupiter orbiter missions.

5.2 Conclusions

Based on the results of extensive numerical simulations on the

Jupiter fly-by and Jupiter orbiter missions, the following conclusions can be

drawn for the class of problems considered here:

1. The system dynamic influences the performance of the EK Filter

through

i) initial conditions

ii) conditional covariance matrices

iii) predicted observations
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The effect of the initial conditions is considered to effect the system dy-

namics directly, in contrast to the effects of the other two factors, which

are regarded as an indirect effect on the performance of the filter. It is

concluded that the indirect effects of the system dynamics are more severe

than the direct effects, especially when the system dynamics are highly non-

linear.

2. The effect of the dynamic second order (DSO) term cannot be

isolated. If the conditional variances are large, which means that the ex-

tended Kalman Filter does not perform adequately, the effect of DSO term is

very severe and causes the second order filters (MGSO and MTSO) to diverge,

in a situation when the EK Filter performs reasonably well. In contrast, the

small conditional variances, which imply that the EK Filter works very well,

do not reveal any differences between the second order filters (MGSO and MTSO)

and the EK Filter. As a matter of fact, there is no reason for using a sec-

ond order filter if the conditional variances are small and the EK Filter

performs adequately. By including the dynamic second order (DSO) term, ap-

proximately 30% more computer time is required than that required by the EK

Filter. Furthermore, any filter including the DSO term is very sensitive to

the initial covariance matrix, if a dynamic nonlinearity is significant at

the beginning. It is interesting to note that Athans et al. (27), based on

a different example problem, concluded that the DSO term is the major fac-

tor in improving the performance of the MGSO Filter. Hence, the conclusions

reached in this investigation regarding the DSO term should be regarded as

problem dependent.

3. The observation nonlinearity depends on the type of observa-

tions and the dynamic nonlinearity. The range and range-rate observation in

the Jupiter fly-by problem are regarded as relatively linear observations.
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Like the DSO term, the effect of the observation second order (OSO) term can-

not be determined for all problems. The same conclusions as those reached

for the DSO term can be stated for the OSO term. But the effect of the OSO

term is not as severe as the effect of the DSO term for the MGSO Filter.

4. The Kalman Gain Compensated (KGC) Filter appears to give a

quite acceptable behavior based on the following observations:

i) In the region where dynamic nonlinearity is not significant,

the KGC Filter acts like the extended Kalman filter.

ii) In the region where dynamic nonlinearity is very severe and,

consequently, the observation residuals are large, the KGC

Filter down weights the large observation residuals.

iii) The effect of the KGC Filter becomes more significant when the

observation noise R is small and the state noise Q is large.

This fact implies that the KGC Filter is more desirable when

the observations are measured accurately and when the dynamic

noise is large or equivalently when the dynamic process is

poorly modeled.

iv) The KGC Filter is very stable and insensitive to the dynamic

nonlinearity as compared with the EK Filter.

v) The KGC Filter maintains an accurate estimate for the highly

nonlinear type of observations while acting like the extended

Kalman Filter for the relatively linear type of observations.

vi) In contrast to any other second order filter, implementation

of the KGC Filter is as feasible for complex problems as the

extended Kalman Filter is.

5. If no state noise is assumed, the EK Filter works adequately
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and the differences between the two filters (EK and KGC) are negligible. The

absence of state noise implies that the conditional variances cannot be too

large.

7. For the Jupiter fly-by, the extended Kalman Filter determines

an adequate estimate up to a period of encounter minus three days. However,

the estimate diverges around encounter, when the dynamic state noise is in-

cluded while the KGC Filter yields accurate estimates.

8. For the Jupiter orbiter, the estimate of the extended Kalman

Filter drifts away gradually from the true trajectory and diverges at the

second revolution, when the dynamic state noise is included while the KGC

Filter yields an accurate estimate.

5.3 Recommendations for Future Study

The research reported here is an indication of a successful appli-

cation of an approximate nonlinear filter and indicates the possibility that

the Kalman Gain Compensated Filter can be applied to other problems. The

following studies are recommended:

1. Application of the KGC Filter to the orbit determination prob-

lems associated with re-entry, near-Earth and lunar satellites, Mariner and

Viking missions, should be carried out. In particular, application of the

KGC Filter to the re-entry and ascent phases of the shuttle navigation prob-

lem is recommended.

2. The applicability of the square root covariance and the consider

filter versions of the Kalman Gain Compensated Filter should be developed.

3. An extended study of nonlinear estimation algorithms and their

applicability to the orbit determination problems should be made. The com-

parative study should be made in the frame-work of the applicability of the
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methods to anticipated orbit determination problems. In the study, particu-

lar attention should be given to those data types which undergo significant

geometrical changes during a mission. The objective of such a study would

be to define particular missions and data types for which nonlinear orbit

determination algorithms will yield a significant improvement over the es-

timate obtained with the extended Kalman Filter.

4. Further study of the effects of the dynamic second order (DSO)

term and the observation second order (OSO) term should be made.

5. An extensive study of the Gaussian second order filter and the

truncated second order filter should be made in the direction of determining

the characteristics of the random forcing term in the covariance equation.



APPENDIX A

THE PARTIAL DERIVATIVES

The first order partial derivatives f and h and the secondx x

order partial derivatives f and h which appear in the nonlinear es-
xx xx

timation algorithm are defined in this appendix.

From Eq. (3.5), the (9x9) matrix f can be partitioned as follows:
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The first order partial derivative matrix h is defined as follows:

11 12 19

H21 H H
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h =
x H H ... H
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H H ... H
41 42 49
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The second order partial derivatives f are defined as a (9x9x9) three-

dimensional array and each layer is defined as a symmetric (9x9) matrix. The

three-dimensional array can be pictured as shown in Fig. 26.

Each layer is further partitioned into (3x3) matrices and they are as follows:
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1 3
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4, 4,
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13 33

matrix with identically zero elements. The submatrices

are redefined as follows:
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The second order partial derivative h is a (4x9x9) three-dimensional
xx

array shown in Fig.'27 and each layer is a (9x9) symmetric matrix.

Each layer is partitioned into (3x3) matrices and they are as follows:
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All submatrices with the exception of D are

they are defined as follows:
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(3x3) symmetric matrices and
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APPENDIX B

CONDITIONAL EXPECTATION AND SMOOTHING PROPERTY

Loeve (34) introduced the concept of "conditioning" in terms of sub

a-fields of events, and further conditional probabilities of events and con-

ditional expectations of random variables "given a a-field B" as B-measur-

able functions defined up to an equivalence. The conditional
'
probability of

an event A "given an event B" corresponds to that of the frequencies of the

occurrence of A in the repeat trials where B occurs. For every event A, the

relation

PB · PBA = PAB (B-l)

defines the conditional probability P(A/B) of A given B as the ratio

PAB/PB , provided B is a nonnull event. In a more mathematical form, the

function PB on the a-field A of events, whose values are PBA , AA ,

is called the conditional probability of A given B . Since P on A is

normed, nonnegative and a-additive, so is PB on A ; and PB satisfies the

following condition

BQ= 1 > 0 ' PB PAi = PBAi
B BB Bi

Thus, the conditioning expressed by "given B" means that the initial proba-

bility space (Q,A,P) is replaced by the probability space (Q,A,P
B
) The

expectation of a random variable X on this new probability space is called

the conditional expectation given B and is denoted by

E[X/B] = j XdPB = J XdPB + C XdPB (B-2)

C CB
where B is the complement of B . Knowing that PB = 0 on {AB ,AcA}

and that P P on {AB,AeA} from Eq. B-1, Eq. B-2 becomes

B PB163
163
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E[X/B] = I XdP (B-3)

which is the definition of the conditional expectation of X given B . The

conditional expectation acquires its full meaning when interpreted as values

of functions as follows: the number E[X/B] is no longer assigned to B but

to every point of B ,and similarly for E[X/BC ] so that we have a two-

valued function on Q , with values E[X/B] for weB and E[X/BC] for weBC

More generally, let {B.1 be a countable partition of Q and let B be the

minimum a-field over this partition. Let Z be the family of all random var-

iables X whose expectation, E[X] , exists so that their indefinite integrals,

hence conditional expectations given any nonnull event, exist. Then the condi-

tional expectation of X given B is defined as the following elementary

functions (see page 64 of Loeve for the definition) up to an equivalence

E[X/B] = (- XdP)IB; Xe (B-)
fPB] Bj (B-4)

The above is the constructive definition and is different from (B-3) in the

sense that conditioning is given as a a-field, B, instead of an event B

BeB . It can be easily seen further that the conditioning can be either as a

random variable which is B-measurable function or as an output of the random

variable. If the partition {B.} is not countable, the above constructive

definition is not applicable and rather powerful tool, namely, the Radon-

Nikodym theorem is employed and the descriptive definition is followed. Let

PB be the restriction of P to B , defined by

PBB = PB BEB (B-5)

then the conditional expectation E[X/B] of X given B is any B-measur-

abel function whose indefinite integral with respect to PB is the restriction
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to B of the indefinite integral of X with respect to P . This definition

means precisely that, for every XEC , E[X/B] is defined by

T E[X/B]dPB = XdP BcB (B-6)

up to an equivalence. Loosely speaking, the operation E[X/B] is a B-smooth-

ing and some of its important properties are quoted from Loeve without proof.

1. On'every nonnull atom* BeB , E[X/B] is constant and its value E[X/B]

is the average of the values of X on B with respect to P

2. For every B independent of the a-field B
X

of events induced by X

E[X/B] = EX a.s.

3. Conditional expectation operator E['/B] and B-measurable factors com-

mute, that is, if X is B-measurable, then

E[XY/B] = XE[Y/B] a.s.

4. If BcB' , then

E[E[X/B']/B] = E[X/B] = E[E[X/B]/B'] a.s.

It is interesting to note that for the "least fine" or "smallest" of all pos-

sible o-fields BCA , that is, for Bo = {q,Q} , E[X/Bo] = E[X] almost

surely, which means that unconditional expectation is a special case of con-

ditional expectation whose conditioning is merely the least fine a-field.

It is noted also that any deterministic quantity is a random variable which

is measurable over the least fine a-field.

*B is a nonnull atom of B, if PB > 0, and B contains no other sets belong-

ing to B than itself and the empty set.
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The a-field A is induced by the atom set A1 and A
2

and a finer a-field

B containing A is induced by the atom set B1 , B2 , B3 , B4 and B5

in Figure 28. From the figure, it is apparent that the finer the a-field B

is, the closer to X(w) the conditional expectation E[X/B] is. If a

a-field B is identical to the a-field induced by X(w) , then E[X/B] is

identical to X(w) almost surely. The variance E[{X - E(X/B)}2] is pro-

portional to the area between two random variables X(w) and E[X/B] and

the conditional variance E[{X - E[X/B]}2 /B] is constant on every nonnull

atom set B of B and is the average of {X - E(X/B)}2 on B .

Since the conditional expectation is defined in an equivalence

sense, the area under the conditional expectation E[X/B] for various a-field

B must be identical to the area under the random variable X(w) , which is the

unconditional expectation E[X] . The conditional expectation E[X/B] is

the closest approximation of X(U) within the class of B-measurable func-

tions in the sense that the variance is minimized.
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/,-- hhtthht

kJLI
T 2T

I I I I I I I 
I I

Figure 29. A Sample Function of Random Walk

X((wi)
167

X(t)

2S

S

t

F--q
I I I I V-~~~~~~



APPENDIX C

RANDOM WALK, BROWNIAN MOTION AND WHITE NOISE

Historically random-walk models serve as a first approximation to

the theory of diffusion and brownian motion, where small particles are ex-

posed to a tremendous number of molecular shocks. Each shock has a negli-

gible effect, but the superposition of many small actions produces an obser-

vable motion. Accordingly we want to present a random walk where the indi-

vidual steps are extremely small and occur in very rapid succession. In the

limit, the process will appear as a continuous motion, i.e., the so-called

Brownian motion. Once we have grasped the concept of Brownian motion, the

white noise, which is fictitious and nonexsiting but enables human beings to

handle many mathematical problems, can be formally defined as a time deriva-

tive of Brownian motion. Here a brief summary of Papoulis' (36) discussion

on the subject is presented.

The underlying experiment is the tossing of a fair coin an infinite

number of times, and each tossing occurs every T seconds. At each tossing

we take a step, to the right if heads show, to the left if tails show. Our

position at t will be denoted by X(t) . Clearly, X(t) depends on the

experimental outcome, i.e. on the particular sequence of heads and tails.

We have thus created a stochastic process known as random walk. Each sample

function of this process is of stair-case form as in Fig. 29 with discontin-

uities at the points t = nT the steps occur instantly and their length

equals S

th
We denote by xi a random variable equal to ±S, if our i-- step

is to the right or left, i.e. heads or tails. Thus

168



169

P{x. = S = P =

P{x. = -S = q = 

E{x.} = 0

E{xI} = S 2

Note that the random variable x. is independent and has zero mean. The

position at t = nT is clearly a random variable given by

X(nT) = xl + x2 + x (C-1)

Suppose that after the first n tossings, k heads show, then the value of

X(nT) would be given by

X(nT) = kS - (n - k)S = (2k - n)S = rS (C-2)

where

r = 2k - n (C-3)

Since {X(nT) = rS} is the event {k n heads in n tossing} the
2

probability is given by

.r + n [heads 1
P{X(nT) = rS = heads} n +r - (C-4)

2 2 2n

If n is large and npq >> 1 , Demoivre-Laplace theorem (38) is applicable

for values of k in the Vnpq neighborhood of its most likely value np

i.e.

np - vnpq < k < np + Anpq (C-5)

and the approximate form of Eq. (C-4) is given by
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P{k heads} 1 (k - np 2 (C-6)
P 2npq

2 npq

Substitution of P = q = ½1 and k = 2 into Eq. (C-6) yields the

following approximate expression

1 r2

P{X(nt) = rS} e (C-7)
vn- /2 2n

provided that r is of the order of in .

Furthermore, it can be shown that*

P{X(nT) < rS} = 1½ + erf r (C-8)

Finally, the mean and variance of the random variable X(nT) are easily ob-

tained and they are as follows:

E[x(nT)] = 0 (C-9)

E[x2 (nT)] = nS2 (C-10)

In the following discussion, Brownian motion is developed as a limiting form

of the random walk. For the time

t = nT (C-11)

the mean and variance of X(t) become

E[X(t)] = 0 (C-12)

E[X2 (t)] = tS (C-13)

*Athanasias Papoulis, Probability, Random Variables, and Stochastic Processes,
McGraw-Hill, p. 68.
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Suppose now that we keep t constant but we make S and T tend to zero.

The variance of X(t) will remain finite and different from zero only if S

tends to zero as VT . Otherwise, X(t) would be meaningless. Therefore,

assuming

S2 = aT (C-14)

we define the process W(t) as a limit

lim
W(t) = l X(t)

T-+O
(C-15)

A family of continuous functions results for almost all outcomes, which is

known as a Brownian motion or Wiener-Levy process. From Eqs. (C-9) and

(C-10), the mean and variance of this process are obtained and they are

E[W(t)] = 0 (C-16)

E[W2 (t)] = at (C-17)

The value of random process W(t) can

by

be determined from Eq. (C-2) and given

W = rS

In connection with Eqs. (C-11), (C-14)

pression:

(C-18)

and (C-18), we have the following ex-

r W/S

and hence the probability distribution

Eq. (C-8)

W W

ts /T

F(W,t) is obtained as a limit of

F(W,t) = P{W(t) < WI = '1 + erf
va-t

(C-20)

The probability density f(W,t) is readily determined from Eq. (C-20) and

(C-19)
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is given by

1 ~ [2

f(w,t) - exp (- ) (C-21)
,J2cat at

Thus, the random process W(t) is normal, with zero mean and variance at

The fact to be pointed out here is that in passing to a limit, all

formulas for the process W(t) remain meaningful and agree with physically

significant formulas of diffusion theory which can be derived under much

more general conditions by more streamlined methods (Einstein-Wiener theory

and Uhlenbeck-Orstein theory). For example, the density function is obtained

as a solution of the diffusion equation by Einstein (37). The same thing can

be done by using the autocorrelation of the solution of the Langevine equa-

tion (36).

From Eq. (C-1), it is seen that for t1 > t2 , W(t1 ) - W(t2) is

independent of W(t2) - W(O) = W(t
2
) . Hence,

E[{W(t) - W(t2)}W(t 2 )] = E[W(t1) - W(t2)]E[W(t2)] = O (C-22)

Thus,

E[W(t1 )W(t2)] - E[W2 (t2 )] = O (C-23)

Since the left hand side of Eq. (C-22) is an autocorrelation R(t1 ,t
2
) and

the right hand side is cat2 from Eq. (C-17), the following is developed.

at2 for t > t2

R(t1 ,t2) = (C-24)
t1 for t _< t2

An infinitesimal increment dB
t

of Brownian motion W(t) is defined as

dB, = W(t + e) - W(t) (C-25)

The covariance of d 
t

is determined from Eq. (C-24) as follows:
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E[det,da t] = E[{W(t + e) - W(t)}{W(t + e) - W(t)}]

- R(t + e,t + e) - R(t + e,t) = R(t,t + e) + R(t,t)

= a(t + e) - at- at + at

E[d tdSt] = ae (C-26)

If we formally define white gaussian process u(t) as a time derivative of

Brownian motion as follows:

u(t) = dW(t) lim t (-27)
u(t) (C-27)dt e-)-O e

Then the autocorrelation of white gaussian process u(t) is of the form

E[u(t)u(T)] O = a6(t - T) (C-29)

Therefore, the variance of white Gaussian process u(t) 'is infinite, which

is in agreement with the axiomatic definition.

C



APPENDIX D

MARTINGALES

A sequence of random variables x1 ,x2,... is called a martingale

if

E[x I x < n> 1

and

E[Xn+l/Xl, ''Xn] = Xn

with Probability 1.

A stochastic process {xt,teT} is called a martingale if

E[Jxtl] <

for all t and if, whenever n > 1 and t1 < < tn+1

E[x
t

/x ,,x ] = xt
n+l 1 n n

with Probability 1.

<Theorem 1>

If YY2,Y3,''y are defined as

Y1 = X Y2 x2 X x Y3 = 3 -x 2 ,

then, if the xn process is a martingale,

E[lYnj] < X E[Yn+1 /Y,,y ] = 0 , n > 1

with Probability 1. The x 's are thus partial sums of the series

174

(D-1)

(D-2)

(D-3)

(D-4)

y Yn ,
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where the Yn 's satisfy the condition (D-4). Conversely, the partial sums

of any such series constitute a martingale.

<Proof>

xn 's and y n's are linearly related and, hence, the mapping ma-

trix is of full rank. Therefore, the inverse of the mapping matrix exists,

which implies that the conditioning {Yl1," y} of (D-4) can be replaced

by the conditioning {x,---,x . Thus
n

E[Y +1 /y1,, -- ,y n ] = E[(xn+ -Xn)/xl ,..'xn] (D-5)

E[y n+1/Y1,.,yn] = E[Xn+l/x.---.xn] - x (D-6)

Since the x process is a martingale, the right hand side of Eq. (D-6) be-n

comes identically zero and the condition (D-4) immediately follows. Let

n

Xn = Y and the y 's satisfy the condition (D-4), then

E[Xn+l/x''' ,xn] = E[y1 + Y+1 y +/X 1 . (D-7)
n+1 1 n 1 n-I 1 n

E[x n+ 1/x,...,xn] = E[y 1 + . -y +1 /Y 1' y,' (D-8)

E[Xn+l/X 1' ''Xn] = Y1+ + n + E[Yn+/Y'-'] (D-9)

E[ n+1/x1' ,xn] Y1 + *-- + Yn = Xn (D-10)

Therefore, the x 's constitute a martingale and the inverse of the theoremn

is proved.

<Theorem 2>

Let q 'S1'~2'' be any random variables with
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E[lnil <

Then, if x is defined by

xn = E[n/ ,1'...n] (D-11)

the x process is a martingale.

<Proof>

By definition

xn+1 = E[n/S1'..'En+1] (D-12)

Taking the conditional expectation of Eq. (D-12) given the conditioning

{l,'---,n} , we have in fact

E[Xn+/1,', n] = E[E{n/E1,- ,n+l }/, *-.. ] (D-13)

Since the a-field generated by {E 1'" ''i+1} contains the a-field generated

by {%1"'' 'fn} the smoothing property 4 of Appendix B can be applied to

the right hand side of Eq. (D-13). Therefore, Eq. (D-13) becomes

E[X n+1/l1''i,,n] = E[n/1l..- , n] = x (D-14)

with Probability 1. Since xl,.--,xn are random variables on the sample

space of " ''i~n '

E[x /X1 n '1xn .. ] E [Xn+l /1'' n = Xn (D-15)

(D-15) given {x1 ,--,x } and using the smoothing Property 4 of Appendix B,

the martingale property is obtained.
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E[E{Xn+l/X ,' ',Xn,,''', ,n}/xl,''' ,x
n
] = E[x /xl,'''x ] (D-16)

E[Xn+l/xl'- ·,Xn] = n (D-17)

Therefore, Theorem 2 is proved.



APPENDIX E

TRACE OF MATRIX

Let A be an (nxn) square matrix and aij represent the element

.th th
of i row and j column, then the trace of A , denoted by tr(A) , is

the sum of the diagonal elements of A , and similarily of A T , i.e.,

n

tr(A) = tr(A
T
) = all + . + ann a.. (E-i)

<Theorem 3>

Let A be any (nxm) matrix and aij represent the element of

th th T T
i row and j column, then AA and A A are (nxn) and (mxm) square

matrices respectively, and their trace is uniquely determined by the sum of

square of elements, aj i.e.,
1j

n m
tr(AAT ) = tr(A A) = I a2. (E-2)

i=1 j=1

If A is defined to be

A = V - V (E-3)

where V is an (nxm) matrix with elements v.. and V is an approxima-
13

tion of V , with elements v.. , then A represents the approximation error
1J

with elements (v.. - v..) and, hence, tr (AAT ) is the sum of the square
1] j1

errors, (v.. - .i)2 . Therefore, tr(AA T ) would be a sensible criteria to

be minimized and the solution V is the least square error solution. If V

is a matrix of random variables v.. and the risk, trE[AA ] is minimized,
13

then the solution V is the minimum variance estimate. Note that V is not

necessarily a vector.
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APPENDIX F

STOCHASTIC FUNDAMENTAL LEMMAS AND OPTIMALITY CONDITION

<Lemma 1>

If X is a random variable, and if

E[XY] = 0

for every deterministic Y (or every least fine a-field measurable random

variable) then,

E[X] = 0 a.s.

<Proof>

E[XY] = 0

E[X]Y = 0 a.s.

since Y • 0

E[X] = 0 a.s.

<Lemma 2>

If X is a random variable, and if

E[XY] = 0

for every w-function Y measurable with resepct to the a-field

measurable w set , then

E[X/A] = 0 a.s. (F-4)

<Proof>

For the convenience of notation, X denotes the conditional expec-

tation E[X/A] .
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A of the
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E[XY] = E[(X - X + X)Y]

Applying the smoothing property 4, Eq. (F-5) becomes

E[XY] = E[E{(X - X)Y/A}] + E[XY/A] a.s.

E[XY] = E[XY] = 0 a.s.

Since both X and Y are A measurable random variables and Y

trary, it is possible to choose Y = X , then Eq. (F-7) becomes

E[XY] = E[XY] = E[X2] = 0 a.s.

The above is true only for X2 = 0 . Therefore,

X = E[X/A] = 0 a.s.

(F-5)

(F-6)

(F-7)

is arbi-

(F-8)

<Lemma 3>

If X(w,t) is a stochastic process defined on the set [tl,t2]

tE[t1,t2] , and if

t 2

E[X(w,t)Y(w,t)]dt = 0
tI

(F-9)

for every random process Y(w,t) measurable with respect to a a-field A(t) ,

te[t1 ,t2] , then

E[X(w,t)/A(t)] = 0 a.s. (F-10)

for every t , te[t1 ,t2] -

<Proof>

tf 2
tI

E[XY]dt = 0



E [E{XY/A(t) }] dt = 0

E[E{X/A(t)} * Y]dt = 0

Suppose that E[X(w,t)/A(t)] O0 . Since Y is

able function, we can choose Y such that

arbitrary A(t) measur-

Y(w,t) = E[X(w,t)/A(t)] (F-13)

Therefore, Eq. (F-12) becomes

t 2

Jt E[{E[X(w,t)/A(t)}2]dt = 0

1

The above is positive unless E[X(w,t)/A(t)] = 0

Therefore,

E[X(w,t)/A(t)] = 0

for any t , te[tl,t2] -

a.s. te[tl,t2] (F-15)

Let's consider the following risk function

R(g) = trE[(X - g)(X - g)T] = E[(X -g)T(X - g)] (F-16)

where X is an nxl vector. If we want to minimize the risk (F-16) with

any B-measurable function g , then the solution g is the minimum variance

estimate. In order to minimize R , we introduce a variation 6g on g , i.e.

g = g + 6g (F-17)

Then the risk (F-16) becomes

(F-18)

Expanding Eq. (F-18) about g , the following first variation is obtained.

t

ft

2

1

t2

1
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(F-11)

(F-12)

a.s. (F-14)

R(g + 6g) = E[(X - g + 6g)T(X - g + 6g)]
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6R(g) = E[(X - g)T 6g] + E[6gT(x -g)] (F-19)

For the minimum of R , the first variation 6R must be zero and, hence, the

following must be satisfied

E[(X - g)T8g] = 0 (F-20)

Since a variation 6g is an arbitrary B-measurable function, the stochastic

fundamental lemma 2 can be applied and the optimality condition therefore is

obtained as follows:

E[(X - g)/B] = 0 a.s. (F-21)

g = E[X/B] a.s. (F-22)

The solution g is the minimum variance estimate and is given as the condi-

tional expectation of X given B .

If we want to minimize the risk (F-16) with a linear function of

Y which is an (mxl) random variable observed, i.e.

g = KY (F-23)

instead of any B-measurable function, then the solution g is the linear

minimum variance estimate. This time we have to determine an (nxm) matrix

K within a class of B-measurable functions such that the risk (F-16) is

minimized. Introducing a variation. 6K on K , the risk (F-16) becomes

R(K + 6K) = trE[{X - (K + 6K)Y}{X - (K + 6K)Y}T] (F-24)

Expanding Eq. (F-24) about K , the first variation follows, i.e.

6R(K) = trE[(X - RY)Y T6KT] + trE[6KY(X - RY) ] = 0 (F-25)

Since 6K is an arbitrary B-measurable function, the stochastic fundamental

Lemma 2 is applied and the optimality condition is obtained.
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E[(X - KY)Y /B] = 0 a.s. (F-26)

E[XY T/B] = KE[YY T/B] a.s. (F-27)

K = E[XYT/B]{E[YYT/B]}- i a.s. (F-28)

Therefore, the linear minimum variance estimate is given by

g = E[XY T/B]E[YYT/B]} Y (F-29)

For the scalar random variables X and Y , the linear minimum variance es-

timate X is obtained from Eq. (F-29) as follows:

= E[XY/B] y (F-30)
E[YY/B]

If we choose K with a deterministic number which is measurable over the

least fine a-field, the conditioning becomes unconditional and the linear

minimum variance estimate (F-30) becomes

= E[XY] Y (F-31)
E[YY]



BIBLIOGRAIPH'IY

1. Jazwinski, A. H., "Nonlinear Filtering with Discrete Observations", AIAA
3rd Aerospace Science Meeting, AIAA Paper No. 66-38, January, 1966.

2. Jazwinski, A. H., "Filtering for Nonlinear Dynamical Systems", IEEE Trans.
Automatic Control 11, 1966, 765-766.

3. Jazwinski, A. H., Stochastic Process and Filtering Theory, Academic Press,
1970.

4. Bucy, R. S., "Nonlinear Filtering Theory", IEEE Trans. On Automatic Con-
trol, Vol. 10, April, 1965, pp. 198.

5. Bucy, R. S. and Joseph, P. D., Filtering for Stochastic Processes with
Applications to Guidance, Interscience Publishers, New York, 1968.

6. Kalman, R. E., "A New Approach to Linear Filtering and Prediction Prob-
lem", Trans. ASME, Ser. D, J. of Basic Engr., Vol. 82, March,
1960, pp. 34-45.

7. Kalman, R. E. and Bucy, R. S., "New Result in Linear Filtering and Pre-
diction Problem", Trans. ASME, Ser. D, J. of Basic Engr., Vol. 83,
No. 1, March, 1961, pp. 95-107.

8. Kushner, H. J., "On the Differential Equation Satisfied by Conditional
Probability Densities of Markov Process with Applications", J. SIAM,
Control, Ser. A, Vol. 2, No. 1, 1962.

9. Kushner, H. J., "On the Dynamic Equations of Conditional Probability
Density Functions with Applications to Optimal Stochastic Control
Theory", Journal of Math. Analysis and Applications, Vol. 8, No.
2, April, 1964, pp. 332-344.

10. Kushner, H. J., "Approximations to Optimal Nonlinear Filters", IEEE
Trans. Automatic Control 12, 1967, 546-556.

11. Kushner, H. J., "On Stochastic Extremum Problems, Part 1, Calculus",
Journal of Math. Analysis and Applications, Vol. 10, No. 2, April,
1965.

12. Stratonovich, R. L., "Conditional Markov Process", Theory of Probability
and Its Applications, Vol. V, 1960.

13. Bryson A. E., Jr. and Johansen, D. E., "Linear Filtering for Time-Vary-
ing Systems Using Measurements Containing Colored Noise", IEEE
Trans. on Automatic Control, January, 1965.

14. Mortenson, R. E., "Maximum-Likelihood Recursive Nonlinear Filtering",
Journal of Optimization Theory and Applications, Vol. 2, No. 6,
1968.

184



185

15. Mortenson, R. E., "Mathematical Problems of Modeling Stochastic Nonlinear
Systems", NASA CR-1168.

16. Meir, Lewis, "Combined Optimal Control and Estimation Theory", NASA-CR
426, April, 1966.

17. Schwartz, L. and Stear, E. B., "A Computational Comparison of Several
Nonlinear Filters", IEEE Trans. Automatic Control 13, 1968, 83-86.

18. Schwartz, L. and Bass, R. W., "Extensions to Optimal Multichannel Non-
linear Filtering", Report No. SSD 60220R, Hughes Aircraft Company,
Space Systems Division, February, 1966.

19. Schwartz, L., "Approximate Continuous Nonlinear Minimal-Variance Filtering",
Report No. 18, SSD 60472R, Hughes Aircraft Company, Space Systems
Division, December, 1966.

20. Bass, R. W., Norum, V. D. and Schwartz, L., "Optimal Multichannel Non-
linear Filtering", J. Math. Anal. Appl. 16, 1966, 152-164.

21. Detchmendy, D. M. and Sridhas, R., "Sequential Estimation of States and
Parameters in Noisy Nonlinear Dynamic Systems", Proc. 1965 Joint
Automatic Control Conf., Troy, New York, 1965, pp. 56-63.

22. Fisher, J. R., "Conditional Probability Density Functions and Optimal
Nonlinear Estimation", Ph.D. Dissertation, Department of Engineer-
ing, University of California, Low Angeles, California, 1966.

23. Fisher, J. R. and Stear, E. B., "Optimal Nonlinear Filtering for Indepen-
dent Increment Processes - Part I, II", IEEE Trans. on Information
Theory, Vol. IT-3, No. 4, October, 1967.

24. Fisher, J. R., "Optimal Nonlinear Filtering", Advan. Control Systems 5,
1967, 198-301.

25. Cox, Henry, "On the Estimation of State Variables and Parameters for
Noise Dynamic Systems", IEEE Trans. Automatic Control 9, 1964, 5-12.

26. Mehra, R. K., "A Comparison of Several Nonlinear Filters for Reentry Ve-
hicle Tracking", IEEE Trans. Automatic Control, Vol. AC-16, No.
4, August, 1971.

27. Athans, M., Wishner, R. P. and Bertolini, A., "Suboptimal State for Con-
tinuous-Time Nonlinear Systems from Discrete Noise Measurements".
1968 Joint Automatic Control Conf., Ann Arbor, Michigan, June,
1968, pp. 364-382.

28. Jones, D. W., "An Analysis of Approach Navigation Accuracy and Guidance
Requirements for the Grand Tour Mission to the Outer Planets",
Applied Mechanics Research Laboratory Report No. AMRL-1025, The
University of Texas at Austin, August, 1971.



186

29. Fowler, W. T., Jones, D. W. and Tapley, B. D., "A Fortran Program for

Simulating the Orbit Determination Process of an Interplanetary
Space Vehicle", Purchase Order No. 371448, Prepared for the
General Dynamics, Fort Worth Division by Astrodynamics Research
Laboratory, The University of Texas at Austin, Austin, Texas.

30. Ingram, D. S., "Orbit Determination in the Presence of Unmodeled Accel-

erations", Applied Mechanics Research Laboratory Report No. AMRL-
1022, The University of Texas at Austin, Austin, Texas, January,
1971.

31. Alspach, D. L., "A Bayesian Approximation Technique for Estimation and

Control of Time Discrete Stochastic Systems", Ph. D. Dissertation,
University of California, San Diego, California, 1970.

32. Licht, B. W., "Approximations in Optimal Nonlinear Filtering", Ph.D. Dis-
sertation, Case-Western Reserve University, Cleveland, Ohio.

33. Frost, P. A., "Nonlinear Estimation in Continuous Time Systems", Ph.D.
Dissertation, Stanford University, 1968.

34. Loeve Michel, Probability Theory, D. Van Nostrand, Third Edition.

35. Dood, J. L., Stochastic Process, John Wiley and Sons, New York, 1953.

36. Papoulis, Athanasios, Probability, Random Variables and Stochastic Pro-
cesses, McGraw-Hill.

37. Wax, N., Selected Papers on Noise and Stochastic Processes, Dover Publi-
cations, New York, 1954.

38. Feller, William, An Introduction to Probability Theory and Its Applica-
tions, Volume 1, John Wiley and Sons.

39. Deutsch, R., Estimation Theory, Prentice-Hall, 1965.

40. Handbook of Mathematical Functions, AMS55, National Bureau of Standards,
June, 1964.

41. Lainiotis, D. G., "Joint Detection, Estimation and System Identification",
Information and Control, Vol. 19, No. 1, August, 1971.

42. Lainiotis, D. G., "Optimal Nonlinear Estimation", Int. J. Control, 1971,
Vol. 14, No. 6, 1137-1148.

43. Ingram, D. S. and Tapley, B. D., "Lunar Orbit Determination in the Pre-
sence of Unmodeled Accelerations", Astrodynamics Specialists Con-

ference, 1971, August, 17-19, 1971, Ft. Lauderdale, Florida.


